Abstract

The effects of the space–bandwidth product on the phase modulation magnitude are our main topic of investigation here. The large phase modulation produced with the liquid-crystal display (LCD) is realized with the kinoform method. One model is established in order to analyze the effects of the space–bandwidth product. The maximum phase change is drastically increased while the pixel size is less than 50 µm or so. But the effect of the area is almost linear with the maximum phase change. Then the experiments are completed for the purpose of verifying the theoretical analysis. We achieve a phase change of 2.05λ (λ=633 nm), which is half of the calculated value in a 1cm×1cm area, as it is affected by the cross talk and the pixel shape.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Tanone, Z. Zhang, C.-M. Uang, F. T. S. Yu, D. A. Gregory, �??Phase modulation depth for a real-time kinoform using a liquid crystal television,�?? Opt. Eng. 32, 517-521 (1993).
    [CrossRef]
  2. J. Amako and T. Sonehara, �??Kinoform using an electrically controlled birefringent liquid-crystal spatial light modulator,�?? Appl. Opt. 30, 4622-4628 (1991).
    [CrossRef] [PubMed]
  3. J. A. Davis, K. O. Valadéz, and D. M. Cottrell, �??Encoding amplitude and phase information onto a binary phase-only spatial light modulator,�?? Appl. Opt. 42, 2003-2008 (2003).
    [CrossRef] [PubMed]
  4. G. Paul-Hus and Y. Sheng, �??Optical real-time kinoform for on-axis phase-only correlation using liquid crystal television,�?? Proc. SPIE 2043, 287-295 (1993).
  5. Z. Cao, L. Xuan, L. Hu, Y. Liu, Q. Mu, and D. Li, "Investigation of optical testing with a phase-only liquid crystal spatial light modulator," Opt. Express 13, 1059-1065 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1059."> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1059.</a>
    [CrossRef] [PubMed]
  6. N. Lindlein, �??Analysis of the disturbing diffraction orders of computer-generated holograms used for testing optical aspherics,�?? Appl. Opt. 40, 2698-2708 (2001).
    [CrossRef]
  7. Q. Gu, J. Cao and Y. Sun, �??Lagrange invariant, interference invariant and space-bandwidth product,�?? Proc. SPIE 2866, 104-107.
  8. L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Mu, "Phase-only liquid crystal spatial light modulator for wavefront correction with high precision," Opt. Express 12, 6403-6409 (2004), <a href ="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-26-6403.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-26-6403. </a>
    [CrossRef] [PubMed]

Appl. Opt.

Opt. Eng.

A. Tanone, Z. Zhang, C.-M. Uang, F. T. S. Yu, D. A. Gregory, �??Phase modulation depth for a real-time kinoform using a liquid crystal television,�?? Opt. Eng. 32, 517-521 (1993).
[CrossRef]

Opt. Express

Proc. SPIE

G. Paul-Hus and Y. Sheng, �??Optical real-time kinoform for on-axis phase-only correlation using liquid crystal television,�?? Proc. SPIE 2043, 287-295 (1993).

Q. Gu, J. Cao and Y. Sun, �??Lagrange invariant, interference invariant and space-bandwidth product,�?? Proc. SPIE 2866, 104-107.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Measured phase retardation as a function of grey level.

Fig. 2.
Fig. 2.

Phase map measured by the ZYGO interferometer.

Fig. 3.
Fig. 3.

The geometric graph of the model.

Fig. 4.
Fig. 4.

The maximum phase change as a function of pixel size.

Fig. 5.
Fig. 5.

The maximum phase change as a function of the area.

Fig. 6.
Fig. 6.

The maximum phase change as functions of the pixel size and the area.

Fig. 7.
Fig. 7.

(a) The distribution of the pixel and the grey level; (b) the measured phase distribution.

Fig. 8.
Fig. 8.

The measured phase map of the sphere wave: (a) phase change is 3.56λ; (b) phase change is 2.05λ.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

φ CGH = φ out φ in ,
φ kin = φ sur φ ref ,
SW = d x d y d v x d v y = S × W .
SW = Δ x × Δ y × Δ v x × Δ v y ,
R = [ ( 2 L W W 2 λ 2 2 λ ) 2 + L 2 ] 1 2 .
Phase max = R ( R 2 L 2 ) 1 2 .

Metrics