Abstract

Optical filtering has been used to extend the reach of directly modulated laser in 10Gb/s WDM systems via two separate mechanisms: narrowing the broadened spectrum, and converting frequency modulation into useful amplitude modulation. We investigate in detail, the impact of asymmetric and narrowband optical filtering at the transmitter or receiver. Experimental demonstrations for both shorter distance and long-haul like transmission using optical filtering are performed. The transmission reach is nearly doubled from <25-km to >45-km without dispersion compensation. 1400-km error-free transmission (Q>15.6-dB) is further achieved over dispersion-managed link for a directly modulated DFB laser within an 8×10-Gb/s WDM system

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. J. Thiele, L. E. Nelson, and S. K. Das, �??Capacity-enhanced coarse WDM transmission using 10 Gbit/s sources and DWDM overlay,�?? Electron. Lett. 39, 1264-1266 (2003).
    [CrossRef]
  2. A. Zadok, H. Shalom, M. Tur, W. D. Cornwell, and I. Andonovic, �??Spectral shift and broadening of DFB lasers under direct modulation,�?? IEEE Photon. Technol. Lett. 10, 1709-1711 (1998).
    [CrossRef]
  3. K. Sato, �??Semiconductor light sources for 40-Gb/s transmission systems,�?? J. Lightwave Technol. 20, 2035-2043 (2002).
    [CrossRef]
  4. A. Wonfor, R. V. Renty, I. H. White, J. K. White, A. E. Kelly and C. Tombling, �??Uncooled 40 Gb/s transmission over 40 km single mode fiber using multi-level modulation of a highly linear laser,�?? in Proc. OFC, MF60, Atlanta, GA, 2003.
  5. K. Soto, S. Kuwahara, A. Hirano, M. Yoneyama, and Y. Miyamoto, �??4x40 Gbit/s dense WDM transmission over 40-km SMF using directly modulated DFB lasers,�?? in Proc. ECOC, We1.5.7, Stockholm, Sweden, 2004.
  6. B. Wedding, and W. Poehlmann, �??43 Gbit/s transmission over 40.5 km SMF without optical amplifier using a directly modulated laser diode,�?? in Proc. ECOC, We2.6.6, Stockholm, Sweden, 2004.
  7. L. Illing, and M. B. Kennel, �??Shaping current waveforms for direct modulation of semiconductor lasers,�?? IEEE J. Quantum Electron. 40, 445-452 (2004).
    [CrossRef]
  8. K. Nakahara, T. Tsuchiya, T. Kitatani,K. Shinoda, T. Kikawa, F. Hamano, S. Fujisaki, T, Taniguchi, E. Nomoto, M. Sawada, and T. Yuasa, �??12.5-Gb/s Direct modulation up to 115°C in 1.3-µm InGaAlAs-MQW RWG DFB lasers with notch-free grating structure,�?? J. Lightwave Technol. 22, 159-165 (2004).
    [CrossRef]
  9. D. Mahgerefteh, A. M. Benzoni, P. S. Westbrook, K. S. Feder, P. I. Reyes, P. Steinvurzel, B. J. Eggleton, R. G. Ernst, L. A. Reith, and D. M. Gill, �??DMRZ: a directly modulated 10-Gb/s RZ source for ultralong-haul WDM systems,�?? IEEE Photon. Technol. Lett. 14, 546-548 (2002).
    [CrossRef]
  10. M. C. Tatham, X. Cu, L. D. Westbrook, G. Sherlock, and D. M. Spirit, �??Transmission of 10 Gbit/s directly modulated DFB signals over 200-km standard fiber using mid-span spectral inversion,�?? Electron. Lett. 30, 1335�??1336 (1994).
    [CrossRef]
  11. M. D. Feuer, S. Y. Huang, S. L. Woodward, O. Coskun, and M. Boroditsky, �??Electronic dispersion compensation for a 10-Gb/s link using a directly modulated laser,�?? IEEE Photon. Technol. Lett. 15, 1788-1790 (2003).
    [CrossRef]
  12. P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Morgan, �??38.5 km error free transmission at 10 Gbit/s in standard fiber using a low chirp, spectrally filtered, directly modulated 1.55 µm DFB laser,�?? Electron Lett. 33, 310�??311 (1997).
    [CrossRef]
  13. I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, �??10-Gb/s transmission of 1.55-µm directly modulated signal over 100 km of negative dispersion fiber,�?? IEEE Photon. Technol. Lett. 13, 735�??737 (2001).
    [CrossRef]
  14. H. S. Chung, Y. G. Jang, and Y. C. Chung, �??Directly modulated 10-Gb/s signal transmission over 320 km of negative dispersion fiber for regional metro network,�?? IEEE Photon. Technol. Lett. 15, 1306-1308 (2003).
    [CrossRef]
  15. B. Wedding, B. Franz, and B. Junginger, �??10-Gb/s optical transmission up to 253 km via standard single-mode fiber using the method of dispersion-supported transmission,�?? J. Lightwave Technol. 12, 1720-1727 (1994).
    [CrossRef]
  16. C. S. Wong, and H. K. Tsang, �??Improvement of directly modulated diode-laser pulse using an optical delay interferometer,�?? IEEE Photon. Technol. Lett. 16, 632-634 (2004).
    [CrossRef]
  17. G. Yabre, �??Improved direct-modulation characteristics of a semiconductor laser by FM/IM conversion through an interferometer,�?? J. Lightwave Technol. 14, 2135-2140 (1996).
    [CrossRef]
  18. T. Nielsen and S. Chandresekhar, �??OFC 2004 Workshop on Optical and Electronic Mitigation of Impairments�??, J. Lightwave Technol. 23, 131-142 (2005).
    [CrossRef]
  19. A. Agarwal, S. Banerjee, D. F. Grosz, A. P. Kung, D. N. Maywar, A. Gurevich, and T. H. Wood, �??Ultrahigh-capacity long-haul 40-Gb/s WDM transmission with 0.8-b/s/Hz spectral efficiency by means of strong optical filtering,�?? IEEE Photon. Technol. Lett. 15, 470-472 (2003).
    [CrossRef]
  20. N. Yoshikane and I. Morita, �??160% spectrally-efficient 5.12-Tb/s (64x85.4 Gb/s RZ DQPSK) transmission without polarization demultiplexing,�?? in Proc. ECOC, Postdeadline Th4.4.3, Stockholm, Sweden, 2004.
  21. M. McAdama, E. Peral, D. Proenzano, W. K. Marshall, and A. Yariv, �??Improved laser modulation response by frequency modulation to amplitude modulation conversion in transmission through a fiber grating,�?? Appl. Phys. Lett., 71, 879-881 (1997).
    [CrossRef]
  22. H.-Y. Yu, D. Mahgerefteh, P. S. Cho, and J. Goldhar, �??Improved transmission of chirped signals from semiconductor optical devices by pulse reshaping using a fiber Bragg grating filter,�?? J. Lightwave Technol. 17, 898-903 (1999).
    [CrossRef]
  23. M. McAdama, D. Proenzano, E. Peral, W. K. Marshall, and A. Yariv, �??Effect of transmission through fiber gratings on semiconductor laser intensity noise,�?? Appl. Phys. Lett. 71, 3341-3343 (1997).
    [CrossRef]
  24. T. L. Koch and R. A. Linke, �??Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,�?? Appl. Phys. Lett. 48, 613�??615 (1986).
    [CrossRef]

Appl. Phys. Lett.

M. McAdama, E. Peral, D. Proenzano, W. K. Marshall, and A. Yariv, �??Improved laser modulation response by frequency modulation to amplitude modulation conversion in transmission through a fiber grating,�?? Appl. Phys. Lett., 71, 879-881 (1997).
[CrossRef]

M. McAdama, D. Proenzano, E. Peral, W. K. Marshall, and A. Yariv, �??Effect of transmission through fiber gratings on semiconductor laser intensity noise,�?? Appl. Phys. Lett. 71, 3341-3343 (1997).
[CrossRef]

T. L. Koch and R. A. Linke, �??Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,�?? Appl. Phys. Lett. 48, 613�??615 (1986).
[CrossRef]

ECOC 2004

K. Soto, S. Kuwahara, A. Hirano, M. Yoneyama, and Y. Miyamoto, �??4x40 Gbit/s dense WDM transmission over 40-km SMF using directly modulated DFB lasers,�?? in Proc. ECOC, We1.5.7, Stockholm, Sweden, 2004.

B. Wedding, and W. Poehlmann, �??43 Gbit/s transmission over 40.5 km SMF without optical amplifier using a directly modulated laser diode,�?? in Proc. ECOC, We2.6.6, Stockholm, Sweden, 2004.

ECOC 2004 Postdeadline

N. Yoshikane and I. Morita, �??160% spectrally-efficient 5.12-Tb/s (64x85.4 Gb/s RZ DQPSK) transmission without polarization demultiplexing,�?? in Proc. ECOC, Postdeadline Th4.4.3, Stockholm, Sweden, 2004.

Electron Lett.

P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Morgan, �??38.5 km error free transmission at 10 Gbit/s in standard fiber using a low chirp, spectrally filtered, directly modulated 1.55 µm DFB laser,�?? Electron Lett. 33, 310�??311 (1997).
[CrossRef]

Electron. Lett.

M. C. Tatham, X. Cu, L. D. Westbrook, G. Sherlock, and D. M. Spirit, �??Transmission of 10 Gbit/s directly modulated DFB signals over 200-km standard fiber using mid-span spectral inversion,�?? Electron. Lett. 30, 1335�??1336 (1994).
[CrossRef]

H. J. Thiele, L. E. Nelson, and S. K. Das, �??Capacity-enhanced coarse WDM transmission using 10 Gbit/s sources and DWDM overlay,�?? Electron. Lett. 39, 1264-1266 (2003).
[CrossRef]

IEEE J. Quantum Electron.

L. Illing, and M. B. Kennel, �??Shaping current waveforms for direct modulation of semiconductor lasers,�?? IEEE J. Quantum Electron. 40, 445-452 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Agarwal, S. Banerjee, D. F. Grosz, A. P. Kung, D. N. Maywar, A. Gurevich, and T. H. Wood, �??Ultrahigh-capacity long-haul 40-Gb/s WDM transmission with 0.8-b/s/Hz spectral efficiency by means of strong optical filtering,�?? IEEE Photon. Technol. Lett. 15, 470-472 (2003).
[CrossRef]

A. Zadok, H. Shalom, M. Tur, W. D. Cornwell, and I. Andonovic, �??Spectral shift and broadening of DFB lasers under direct modulation,�?? IEEE Photon. Technol. Lett. 10, 1709-1711 (1998).
[CrossRef]

D. Mahgerefteh, A. M. Benzoni, P. S. Westbrook, K. S. Feder, P. I. Reyes, P. Steinvurzel, B. J. Eggleton, R. G. Ernst, L. A. Reith, and D. M. Gill, �??DMRZ: a directly modulated 10-Gb/s RZ source for ultralong-haul WDM systems,�?? IEEE Photon. Technol. Lett. 14, 546-548 (2002).
[CrossRef]

M. D. Feuer, S. Y. Huang, S. L. Woodward, O. Coskun, and M. Boroditsky, �??Electronic dispersion compensation for a 10-Gb/s link using a directly modulated laser,�?? IEEE Photon. Technol. Lett. 15, 1788-1790 (2003).
[CrossRef]

C. S. Wong, and H. K. Tsang, �??Improvement of directly modulated diode-laser pulse using an optical delay interferometer,�?? IEEE Photon. Technol. Lett. 16, 632-634 (2004).
[CrossRef]

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, �??10-Gb/s transmission of 1.55-µm directly modulated signal over 100 km of negative dispersion fiber,�?? IEEE Photon. Technol. Lett. 13, 735�??737 (2001).
[CrossRef]

H. S. Chung, Y. G. Jang, and Y. C. Chung, �??Directly modulated 10-Gb/s signal transmission over 320 km of negative dispersion fiber for regional metro network,�?? IEEE Photon. Technol. Lett. 15, 1306-1308 (2003).
[CrossRef]

J. Lightwave Technol.

OFC 2003

A. Wonfor, R. V. Renty, I. H. White, J. K. White, A. E. Kelly and C. Tombling, �??Uncooled 40 Gb/s transmission over 40 km single mode fiber using multi-level modulation of a highly linear laser,�?? in Proc. OFC, MF60, Atlanta, GA, 2003.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Conceptual diagram of off-center optical filtering in directly modulated systems

Fig. 2.
Fig. 2.

(a) Transmission profile and chromatic dispersion of the optical filter used in the experiment. (b) Frequency response of the DML

Fig. 3.
Fig. 3.

Experimental setup of short distance transmission without dispersion compensation: For filtering at the transmitter, NBOF is placed after DML, while for filtering at the receiver, NBOF is placed before the receiver (after the transmission fiber). Inserted eye diagrams compare cases with and without optical filtering.

Fig. 4.
Fig. 4.

(a) Back-to-back Q-Factor improvement using optical filtering under different bias conditions. (b) Eye diagram without filtering (c) Eye diagram with filtering

Fig. 5.
Fig. 5.

Experimental results: (a) optical filtering at the transmitter (after DML), two bias conditions are shown here (-0.9 V and -1.4 V); (b) Comparison of optical filtering at the transmitter and the receiver (bias=-1.4 V); Simulation results for different optical filtering: (c) Gaussian filter (open square: 10-GHz bandwidth with 8-GHz detuning; solid dot: 15-GHz bandwidth with 14-GHz detuning; solid triangle: 20-GHz bandwidth with 18-GHz detuning) (b) 3-order super-Gaussian filter (open square: 10-GHz bandwidth with 9-GHz detuning; solid dot: 30-GHz bandwidth with 20-GHz detuning; solid triangle: 50-GHz bandwidth with 30-GHz detuning).

Fig. 6.
Fig. 6.

(a) Comparison of optical spectrum and the corresponding eye diagrams for center filtering (maximum optical power) and side-band (asymmetric) filtering: ~20-GHz detuning from the carrier center is applied here. (b) Simulated detuning sensitivity of filtering with different bandwidth after 35-km transmission for the Gaussian filter

Fig. 7.
Fig. 7.

Experimental setup of long-haul DML transmission using a recirculating loop testbed.

Fig. 8.
Fig. 8.

Comparison of optical spectra with inserted eye diagrams after ~940-km transmission (a) the optical spectrum of filtering at the carrier center (closed eye) (b) the optical spectrum of asymmetric filtering (eye remains open).

Fig. 9.
Fig. 9.

Experimental results showing system performance improvement using asymmetric narrowband filtering. (a) Q-factor of eight channels after 1100-km transmission (under ~0-ps/nm residual dispersion). (b) Overall transmission performance (Q vs. distance) of DML under different residual dispersion values.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ ν ( t ) = 1 2 π d ϕ dt = α 4 π ( d dt ln P ( t ) + κ P ( t ) )
E ( t ) = P 0 ( t ) exp [ j ϕ ( t ) ] = P 0 ( t ) exp [ j 2 π t υ ( t ) dt ]
Δ RIN ( Ω ) = 10 log 10 [ 1 + ( T α Ω 0 2 2 T Ω ) 2 ]
E in ( t ) = E 0 1 + m sin ( Ω t ) exp [ i β cos ( Ω t + θ FM ) ]
β = α 2 m 1 + ( κ Ω ) 2 and θ FM = tan 1 ( Ω κ )
E ˜ out ( ω ) = E ˜ in ( ω ) t ( ω ) exp [ i β ( ω ω 0 ) 2 L 2 ]

Metrics