Abstract

We report a miniature hydrogen sensor that consists of a sub-wavelength diameter tapered optical fiber coated with an ultra thin palladium film. The optical properties of the palladium layer changes when the device is exposed to hydrogen. Consequently, the absorption of the evanescent waves also changes. The sensor was tested in a simple light transmission measurement setup that consisted of a 1550 nm laser diode and a photodetector. Our sensor is much smaller and faster than other optical hydrogen sensors reported so far. The sensor proposed here is suitable for detecting low concentrations of hydrogen at normal conditions.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. .J. Bures and R. Ghosh, �??Power density of the evanescent field in the vicinity of a tapered fibre,�?? J. Opt. Soc. Am. A 16, 1992-1996 (1999).
    [CrossRef]
  2. F. L. Kien, J. Q. Liang, K. Hakuta, and J. I. Balykin, �??Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,�?? Opt. Commun. 242, 445-455 (2004).
    [CrossRef]
  3. L. Tong, J. Lou, and E. Mazur, �??Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,�?? Opt. Express 12, 1025-1035 (2004), <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025>http://www.opticsexpress.org/abstract.cfm? URI=OPEX-12-6-1025</a>.
    [CrossRef] [PubMed]
  4. G. Brambilla, V. Finazzi, and D. J. Richardson, �??Ultra-low-loss optical fiber nanotapers,�?? Opt. Express 12, 2258-2263 (2004), <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2258>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2258</a>.
    [CrossRef] [PubMed]
  5. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur �??Subwavelength-diameter silica wires for low-loss optical wave guiding,�?? Nature 426, 816-819 (2003).
    [CrossRef] [PubMed]
  6. J. Lou, L. Tong, and Z. Ye, �??Modeling of silica nanowires for optical sensing,�?? Opt. Express 13, 2135-2140 (2005), <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-6-2135>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-6-2135</a>
    [CrossRef] [PubMed]
  7. J. Kong, N. R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K.Cho, H. Dai, �??Nanotube molecular wires as chemical sensors,�?? Science 287, 622-625 (2000).
    [CrossRef] [PubMed]
  8. Y. Cui, Q. Wei, H. Park, C. M. Lieber, �??Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,�?? Science 293, 1289-1292 (2001).
    [CrossRef] [PubMed]
  9. X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee, and S. T. Lee, �??Silicon nanowires as chemical sensors,�?? Chem. Phys. Lett. 369, 220-224 (2003).
    [CrossRef]
  10. F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, �??Hydrogen sensors and switches from electrodeposited palladium mesowire arrays,�?? Science 293, 2227-2231 (2001).
    [CrossRef] [PubMed]
  11. O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, and C. A. Grimes, �??Hydrogen sensing using titania nanotubes,�?? Sens. Actuators B 93, 338-344 (2003).
    [CrossRef]
  12. M. Z. Atashbar, D. Banerji, and S. Singamaneni, �??Room-temperature hydrogen sensor based on palladium nanowires,�?? IEEE Sensors J. (to be published).
  13. F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson. �??Low loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure,�?? IEEE J. Lightwave Technol. 6, 1476-1482, (1988).
    [CrossRef]
  14. J. Villatoro, D. Monzón-Hernández, and E. Mejía, �??Fabrication and modeling of uniform-waist singlemode tapered optical fiber sensors,�?? Appl. Opt. 42, 2278-2283 (2003).
    [CrossRef] [PubMed]
  15. R. P. Kenny, T. A. Birks, and K. P. Oakley, �??Control of optical fiber taper shape,�?? Electron. Lett. 27, 1654- 1656 (1991).
    [CrossRef]
  16. K. Wyzykowski, A. Rodzik, and B. Baranowski, �??Optical transmission and reflection of PdHx thin films,�?? J. Phys. Condens. Matter 1, 2269-2277 (1989).
    [CrossRef]
  17. M. A. Butler, �??Micromirror optical-fiber hydrogen sensor,�?? Sens. Actuators B 22, 155-163 (1994).
    [CrossRef]
  18. Y. T. Cheng, Y. Li, D. Lisi, and W. M. Wang, �??Preparation and characterization of Pd/Ni films for hydrogen sensing,�?? Sens. Actuators B 30, 11-16 (1996).
    [CrossRef]
  19. J. Villatoro, A. Diez, J. L. Cruz, and M. V. Andres, �??In-line highly sensitive hydrogen sensors based on Pdcoated single-mode tapered fibers,�?? IEEE Sensors J. 3, 533-537 (2003).
    [CrossRef]
  20. J. Villatoro, D. Luna-Moreno, and D. Monzón Hernández, �??Optical fiber hydrogen sensor for concentrations below the lower explosive limit,�?? Sens. Actuators B (to be published).
  21. B. Chadwick, Tann, M. Brungs, and M. Gal, �??A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy,�?? Sens. Actuators B 17, 215-220 (1994).
    [CrossRef]
  22. X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clément, �??Surface plasmon resonance hydrogen sensor using an optical fibre,�?? Meas. Sci. Technol. 13, 118-124 (2002
    [CrossRef]
  23. Yu. O. Barmenkov, A. Ortigosa-Blanch, A. Diez, J. L. Cruz, and M. V. Andres, �??Time-domain fiber laser hydrogen sensor,�?? Opt. Lett. 29, 2461-2463 (2004).
    [CrossRef] [PubMed]

Appl. Opt.

Chem. Phys. Lett.

X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee, and S. T. Lee, �??Silicon nanowires as chemical sensors,�?? Chem. Phys. Lett. 369, 220-224 (2003).
[CrossRef]

Electron. Lett.

R. P. Kenny, T. A. Birks, and K. P. Oakley, �??Control of optical fiber taper shape,�?? Electron. Lett. 27, 1654- 1656 (1991).
[CrossRef]

IEEE J. Lightwave Technol.

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson. �??Low loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure,�?? IEEE J. Lightwave Technol. 6, 1476-1482, (1988).
[CrossRef]

IEEE Sensors J.

M. Z. Atashbar, D. Banerji, and S. Singamaneni, �??Room-temperature hydrogen sensor based on palladium nanowires,�?? IEEE Sensors J. (to be published).

J. Villatoro, A. Diez, J. L. Cruz, and M. V. Andres, �??In-line highly sensitive hydrogen sensors based on Pdcoated single-mode tapered fibers,�?? IEEE Sensors J. 3, 533-537 (2003).
[CrossRef]

J. Opt. Soc. Am.

.J. Bures and R. Ghosh, �??Power density of the evanescent field in the vicinity of a tapered fibre,�?? J. Opt. Soc. Am. A 16, 1992-1996 (1999).
[CrossRef]

J. Phys. Condens. Matter

K. Wyzykowski, A. Rodzik, and B. Baranowski, �??Optical transmission and reflection of PdHx thin films,�?? J. Phys. Condens. Matter 1, 2269-2277 (1989).
[CrossRef]

Meas. Sci. Technol.

X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clément, �??Surface plasmon resonance hydrogen sensor using an optical fibre,�?? Meas. Sci. Technol. 13, 118-124 (2002
[CrossRef]

Nature

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur �??Subwavelength-diameter silica wires for low-loss optical wave guiding,�?? Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Opt. Commun.

F. L. Kien, J. Q. Liang, K. Hakuta, and J. I. Balykin, �??Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,�?? Opt. Commun. 242, 445-455 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Science

J. Kong, N. R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K.Cho, H. Dai, �??Nanotube molecular wires as chemical sensors,�?? Science 287, 622-625 (2000).
[CrossRef] [PubMed]

Y. Cui, Q. Wei, H. Park, C. M. Lieber, �??Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,�?? Science 293, 1289-1292 (2001).
[CrossRef] [PubMed]

F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, �??Hydrogen sensors and switches from electrodeposited palladium mesowire arrays,�?? Science 293, 2227-2231 (2001).
[CrossRef] [PubMed]

Sens. Actuators B

O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, and C. A. Grimes, �??Hydrogen sensing using titania nanotubes,�?? Sens. Actuators B 93, 338-344 (2003).
[CrossRef]

M. A. Butler, �??Micromirror optical-fiber hydrogen sensor,�?? Sens. Actuators B 22, 155-163 (1994).
[CrossRef]

Y. T. Cheng, Y. Li, D. Lisi, and W. M. Wang, �??Preparation and characterization of Pd/Ni films for hydrogen sensing,�?? Sens. Actuators B 30, 11-16 (1996).
[CrossRef]

J. Villatoro, D. Luna-Moreno, and D. Monzón Hernández, �??Optical fiber hydrogen sensor for concentrations below the lower explosive limit,�?? Sens. Actuators B (to be published).

B. Chadwick, Tann, M. Brungs, and M. Gal, �??A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy,�?? Sens. Actuators B 17, 215-220 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Illustration of a tapered optical fiber. ρ0 is the initial diameter, typically 125 µm. (b) Schematic cross section of the device. ρ is the waist diameter, L0 is the length of the waist, and t is the maximum thickness of the palladium film (shadowed area). λ refers to wavelength.

Fig. 2.
Fig. 2.

Experimental results on the fabrication of a nano taper. The transmission was measured during the whole fabrication process. The monitored wavelength was 1550 nm.

Fig. 3.
Fig. 3.

Diagram of the experimental set-up used to test the sensors. MFC stands for mass flow controllers, LD for laser diode, and SMF for singlemode optical fiber.

Fig. 4.
Fig. 4.

(a) Time response of a sensor when it was exposed to different hydrogen concentrations. (b) Transmission versus hydrogen concentration. Sensor parameters: ρ=1300 nm, L=2 mm, and t=4 nm.

Fig. 5.
Fig. 5.

Time response of the sensor described in Fig. 4 upon consecutive cycles from a pure nitrogen atmosphere to a mixture of 3.9% hydrogen in nitrogen.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P t = P 0 exp ( 2 r Δ α L ) .

Metrics