Abstract

We present a polarization converter using one-dimensional grating principles. The device is based on slanted slots etched deeply into an InP/InGaAsP heterostructure. Almost complete polarization conversion, with a 14 dB extinction ratio, is observed for a device less than 2 µm long.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. A. Haus, L. C. Kimerling, and M. Romagnoli, �??Application of high index contrast technology to integrated optical devices,�?? Exp 3, 40 �?? 45 (2003), <a href="http://exp.telecomitalialab.com">http://exp.telecomitalialab.com</a>.
  2. M. R. Watts and H. A. Haus, �??Integrated mode-evolution-based polarization rotators,�?? Opt. Lett. 30, 138-140 (2005).
    [CrossRef] [PubMed]
  3. I. Kiyat, A. Aydinli, and N. Dagli, �??A compact silicon-on-insulator polarization splitter,�?? IEEE Phot. Technol. Lett. 17, 100-102 (2005).
    [CrossRef]
  4. D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, �??A compact two-dimensional grating coupler used as a polarization splitter,�?? IEEE Phot. Technol. Lett. 15, 1249-1251 (2003).
    [CrossRef]
  5. L. Wu, M. Mazilu, J.-F. Gallet, T. F. Krauss, A. Jugessur, and R. M. De La Rue, �??Planar photonic crystal polarization splitter,�?? Opt. Lett. 29, 1620-1622 (2004).
    [CrossRef] [PubMed]
  6. H. El-Refaei, D. Yevick and T. Jones, �??Slanted-rib waveguide InGaAsP-InP Polarization converters,�?? J. Lightwave Technol. 22, 1352-1357 (2004).
    [CrossRef]
  7. J. Cai, J. Jiang, and G. P. Nordin, �??Ultra-short waveguide polarization converter using a sub-wavelength grating,�?? in Integrated Photonics Research Topical Meetings (The Optical Society of America, Washington, DC, 2004), presentation IFG2.
  8. M. Born and E. Wolff, Principles of Optics (Cambridge University Press, Cambridge, UK, 1980).
  9. L. O'Faolain, M. V. Kotlyar, N. Tripathi, R. Wilson, and T. F. Krauss are preparing a manuscript to be called �??Fabrication of photonic crystals using a spin coated hydrogen silsesquioxane (HSQ) hard mask�??.
  10. M. V. Kotlyar, L. O'Faolain, R. Wilson, and T. F. Krauss, �??High-aspect-ratio chemically assisted ion-beam etching for photonic crystals using a high beam voltage-current ratio,�?? J. Vac. Scien. Technol. B 22, 1788-1791 (2004).
    [CrossRef]
  11. R. Ferrini,B. Lombardet, B. Wild, and R. Houdre, �??Hole depth- and shape-induced radiation losses in two-dimensional photonic crystals,�?? Appl. Phys. Lett. 82, 1009-1011 (2003).
    [CrossRef]

Appl. Phys. Lett. (1)

R. Ferrini,B. Lombardet, B. Wild, and R. Houdre, �??Hole depth- and shape-induced radiation losses in two-dimensional photonic crystals,�?? Appl. Phys. Lett. 82, 1009-1011 (2003).
[CrossRef]

Exp (1)

H. A. Haus, L. C. Kimerling, and M. Romagnoli, �??Application of high index contrast technology to integrated optical devices,�?? Exp 3, 40 �?? 45 (2003), <a href="http://exp.telecomitalialab.com">http://exp.telecomitalialab.com</a>.

IEEE Phot. Technol. Lett. (2)

I. Kiyat, A. Aydinli, and N. Dagli, �??A compact silicon-on-insulator polarization splitter,�?? IEEE Phot. Technol. Lett. 17, 100-102 (2005).
[CrossRef]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, �??A compact two-dimensional grating coupler used as a polarization splitter,�?? IEEE Phot. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

J. Lightwave Technol. (1)

J. Vac. Scien. Technol. B (1)

M. V. Kotlyar, L. O'Faolain, R. Wilson, and T. F. Krauss, �??High-aspect-ratio chemically assisted ion-beam etching for photonic crystals using a high beam voltage-current ratio,�?? J. Vac. Scien. Technol. B 22, 1788-1791 (2004).
[CrossRef]

Opt. Lett. (2)

Other (3)

J. Cai, J. Jiang, and G. P. Nordin, �??Ultra-short waveguide polarization converter using a sub-wavelength grating,�?? in Integrated Photonics Research Topical Meetings (The Optical Society of America, Washington, DC, 2004), presentation IFG2.

M. Born and E. Wolff, Principles of Optics (Cambridge University Press, Cambridge, UK, 1980).

L. O'Faolain, M. V. Kotlyar, N. Tripathi, R. Wilson, and T. F. Krauss are preparing a manuscript to be called �??Fabrication of photonic crystals using a spin coated hydrogen silsesquioxane (HSQ) hard mask�??.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Cross-section of 230-nm wide slots etched at 45° into an InP/InGaAsP waveguide heterostructure. The sample was etched using a beam voltage of 1450 V, a beam current of 17 mA, 2 sccm of Cl2 and 10 sccm of Ar. The bold white line schematically represents the cross-section of the ridge waveguide (defined by photolithography and shallow etching) into which the slots are etched.

Fig. 2.
Fig. 2.

SEM image of the top view of a finished device illustrating the input/output shallow etched 5-µm wide ridge waveguides and a 1.5-µm long polarization converter consisting of deeply etched slanted slots. The slight misalignment between the slots and the waveguide is caused by the limited alignment accuracy of our photolithographic process.

Fig. 3.
Fig. 3.

TE fraction of the output light vs the length of the polarization converter for both TE and TM input polarizations. The dots are the experimental data and the lines are modeled. The polarization rotator consisted of 270 nm wide air slots (with a 650 nm period) etched at an angle of 45 degrees.

Fig. 4.
Fig. 4.

Output power vs. polarization angle for TE incoming light.

Fig. 5.
Fig. 5.

Simulated dependence of the beat length on the width of the semiconductor section for a 270 nm width of the air slots. Filled dots: simulated values. Solid line: guide to the eye, corresponding to a cubic fit. Crosses: experimental values.

Fig. 6.
Fig. 6.

Simulated wavelength dependence of the TE/TM extinction ratio at the output of the same device as in Figs. 1 and 2 for a TM polarized input mode. The simulated TE/TM extinction ratio is larger than 15 dB over the range 1170 nm to 1370 nm.

Metrics