Abstract

We numerically demonstrate a metamaterial with both negative ε and negative µ over an overlapping near-infrared wavelength range resulting in a low loss negative-index material. Parametric studies optimizing this negative index are presented. This structure can be easily fabricated with standard semiconductor processing techniques.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. A. Shelby, D. R. Smith, S. Schultz, �??Experimental Verification of a Negative Index of Refraction,�?? Science 292, 77-79 (2002).
    [CrossRef]
  2. J. B. Pendry, �??Negative refraction makes a perfect lens,�?? Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  3. N. C. Panoiu and R. M. Osgood, �??Influence of the dispersive properties of metals on the transmission characteristics of left-handed materials,�?? Phys. Rev. E 68, 016611(2003).
    [CrossRef]
  4. N. C. Panoiu and R. M. Osgood, �??Numerical investigation of negative refractive index metamaterials at infrared and optical frequencies,�?? Opt. Commun. 233, 331 (2003).
    [CrossRef]
  5. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, �??Terahertz Magnetic Response from Artificial Materials,�?? Science 303, 1494-1496 (2004).
    [CrossRef] [PubMed]
  6. Stefan Linden, Christian Enkrich, Martin Wegener, Jiangfeng Zhou, Thomas Koschny, and Costas M. Soukoulis, �??Magnetic Response of Metamaterials at 100 Terahertz,�?? Science 306, 1351-1353 (2004).
    [CrossRef] [PubMed]
  7. Shuang Zhang, Wenjun Fan, A. Frauenglass, B. Minhas, K. J. Malloy and S. R. J. Brueck, �??Demonstration of Mid-Infrared Resonant Magnetic Nanostructures Exhibiting a Negative Permeability,�?? Phys. Rev. Lett. 94, 037402 (2005).
    [CrossRef] [PubMed]
  8. Shuang Zhang, Wenjun fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, S. R. J. Brueck, �??Demonstration of Near-Infrared Negative-Index Materials,�?? Postdeadline Paper at OSA Topical Meeting on NanoPhotonics for Information Systems (April 15, 2005), at IQEC (May 26, 2005) and submitted to Phys. Rev. Lett. Also available at: <a href= "http://arxiv.org/ftp/physics/papers/0504/0504208.pdf"> http://arxiv.org/ftp/physics/papers/0504/0504208.pdf</a> (2005)
  9. Vladimir M. Shalaev, Wenshan Cai, Uday Chettiar, Hsiao-Kuan Yuan, Andrey K. Sarychev, Vladimir P. Drachev, Alexander V. Kildishev, �??Negative Index of Refraction in Optical Metamaterials,�?? <a href= "http://arxiv.org/ftp/physics/papers/0504/0504091.pdf.">http://arxiv.org/ftp/physics/papers/0504/0504091.pdf.</a> (2005)
  10. M. G. Moharam and T.K. Gaylord, �??Rigorous coupled-wave analysis of planar-grating diffraction,�?? J. Opt. Soc. Am. 71, 811-818 (1981).
    [CrossRef]
  11. B. K. Minhas, W. Fan, K. Agi, S. R. J. Brueck and K. J. Malloy, �??Metallic Inductive and Capacitive Grids: Theory and Experiment,�?? J. Opt. Soc. Am. A19, 1352-1359 (2002).
    [CrossRef]
  12. D. R. Smith and S. Schultz, �??Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,�?? Phys. Rev. B65, 195104. (2002)
  13. S. O'Brien and J. B. Pendry, �??Magnetic activity at infrared frequencies in structured metallic photonic crystals,�?? J. Phys. Condens. Matter 14, 6383-6394 (2002).
    [CrossRef]
  14. M. Qui, �??Effective Index Method for Heterostructure-Slab-Waveguide-Based Two-Dimensional Photonic Crystals,�?? Appl. Phys. Lett. 81, 1163-1165 (2002).
    [CrossRef]
  15. J. H. Weaver, C. Krafka, D. W. Lynch and E. E. Koch, Optical Properties of Metals, Physics Data Vols. I and II (Fachinformationzentrum, Karlsrube, Germany, 1981), Vol. 18-2.
  16. M.K. Karkkainen, �??Numerical study of wave propagation in uniaxially anisotropic Lorentzian backwardwave slabs,�?? Phys. Rev. E68, 026602 (2003).
  17. J. B. Pendry, L. Martin-Moreno and F. J. Garcia-Vidal, �??Mimicking Surface Plasmons with Structured Surfaces,�?? Science 305, 847-848 (2004).
    [CrossRef] [PubMed]
  18. Xiaolan Chen, Saleem H. Zaidi, S. R. J. Brueck and D. J. Devine, "Interferometric Lithography of Sub- Micrometer Sparse Hole Arrays for Field-Emission Display Applications," J. Vac. Sci. Technol. B14, 3339-3349 (1996).

Appl. Phys. Lett.

M. Qui, �??Effective Index Method for Heterostructure-Slab-Waveguide-Based Two-Dimensional Photonic Crystals,�?? Appl. Phys. Lett. 81, 1163-1165 (2002).
[CrossRef]

J. Opt. Soc. Am.

M. G. Moharam and T.K. Gaylord, �??Rigorous coupled-wave analysis of planar-grating diffraction,�?? J. Opt. Soc. Am. 71, 811-818 (1981).
[CrossRef]

B. K. Minhas, W. Fan, K. Agi, S. R. J. Brueck and K. J. Malloy, �??Metallic Inductive and Capacitive Grids: Theory and Experiment,�?? J. Opt. Soc. Am. A19, 1352-1359 (2002).
[CrossRef]

J. Phys. Condens. Matter

S. O'Brien and J. B. Pendry, �??Magnetic activity at infrared frequencies in structured metallic photonic crystals,�?? J. Phys. Condens. Matter 14, 6383-6394 (2002).
[CrossRef]

J. Vac. Sci. Technol.

Xiaolan Chen, Saleem H. Zaidi, S. R. J. Brueck and D. J. Devine, "Interferometric Lithography of Sub- Micrometer Sparse Hole Arrays for Field-Emission Display Applications," J. Vac. Sci. Technol. B14, 3339-3349 (1996).

NanoPhotonics for Info. Syst. 2005

Shuang Zhang, Wenjun fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, S. R. J. Brueck, �??Demonstration of Near-Infrared Negative-Index Materials,�?? Postdeadline Paper at OSA Topical Meeting on NanoPhotonics for Information Systems (April 15, 2005), at IQEC (May 26, 2005) and submitted to Phys. Rev. Lett. Also available at: <a href= "http://arxiv.org/ftp/physics/papers/0504/0504208.pdf"> http://arxiv.org/ftp/physics/papers/0504/0504208.pdf</a> (2005)

Opt. Commun.

N. C. Panoiu and R. M. Osgood, �??Numerical investigation of negative refractive index metamaterials at infrared and optical frequencies,�?? Opt. Commun. 233, 331 (2003).
[CrossRef]

Phys. Rev.

M.K. Karkkainen, �??Numerical study of wave propagation in uniaxially anisotropic Lorentzian backwardwave slabs,�?? Phys. Rev. E68, 026602 (2003).

D. R. Smith and S. Schultz, �??Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,�?? Phys. Rev. B65, 195104. (2002)

Phys. Rev. E

N. C. Panoiu and R. M. Osgood, �??Influence of the dispersive properties of metals on the transmission characteristics of left-handed materials,�?? Phys. Rev. E 68, 016611(2003).
[CrossRef]

Phys. Rev. Lett.

Shuang Zhang, Wenjun Fan, A. Frauenglass, B. Minhas, K. J. Malloy and S. R. J. Brueck, �??Demonstration of Mid-Infrared Resonant Magnetic Nanostructures Exhibiting a Negative Permeability,�?? Phys. Rev. Lett. 94, 037402 (2005).
[CrossRef] [PubMed]

J. B. Pendry, �??Negative refraction makes a perfect lens,�?? Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Science

R. A. Shelby, D. R. Smith, S. Schultz, �??Experimental Verification of a Negative Index of Refraction,�?? Science 292, 77-79 (2002).
[CrossRef]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, �??Terahertz Magnetic Response from Artificial Materials,�?? Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Stefan Linden, Christian Enkrich, Martin Wegener, Jiangfeng Zhou, Thomas Koschny, and Costas M. Soukoulis, �??Magnetic Response of Metamaterials at 100 Terahertz,�?? Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

J. B. Pendry, L. Martin-Moreno and F. J. Garcia-Vidal, �??Mimicking Surface Plasmons with Structured Surfaces,�?? Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Other

J. H. Weaver, C. Krafka, D. W. Lynch and E. E. Koch, Optical Properties of Metals, Physics Data Vols. I and II (Fachinformationzentrum, Karlsrube, Germany, 1981), Vol. 18-2.

Vladimir M. Shalaev, Wenshan Cai, Uday Chettiar, Hsiao-Kuan Yuan, Andrey K. Sarychev, Vladimir P. Drachev, Alexander V. Kildishev, �??Negative Index of Refraction in Optical Metamaterials,�?? <a href= "http://arxiv.org/ftp/physics/papers/0504/0504091.pdf.">http://arxiv.org/ftp/physics/papers/0504/0504091.pdf.</a> (2005)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of the NIM design (a) Staple structures for magnetic resonance (Ref. 7) (b) A simplified structure for magnetic resonance. (c) Array of metallic wires along the electrical field direction for electrical response. (d) Combining (b) and (c) to get a negative index material.

Fig. 2.
Fig. 2.

Top view of the structure with geometrical parameters indicated.

Fig. 3.
Fig. 3.

Effective permeability for different Au linewidths. The inset shows the wavelength of the resonance peak versus the Au linewidth dx in µm.

Fig. 4.
Fig. 4.

Top - transmission of samples with different dy at fixed dx of 500 nm. The bottom panel shows the transmission phase.

Fig. 5.
Fig. 5.

(a) Real and imaginary parts of the effective index for different dy , (b) Real and imaginary part of effective impedance. The same color convention as Fig. 4 is followed.

Fig. 6.
Fig. 6.

Ratio of real and imaginary part of effective index for different dy , The same color convention as fig. 4 is followed.

Fig. 7.
Fig. 7.

(a) Real part of effective permeability (b) Real part of effective permittivity. The same color convention as fig. 4 is followed.

Fig. 8.
Fig. 8.

Fit of the simulated effective permeability with a Lorentzian lineshape. Black and gray: RCWA simulation of the real and imaginary part of the permeability. Red and blue, the Lorentzian lineshape curve.

Fig. 9.
Fig. 9.

(a) Effective index for scattering losses of 1- (black), 2- (red) and 3-times (blue) that of bulk Au. (b) Ratio of the real and imaginary parts of the index.

Fig. 10.
Fig. 10.

(a) effective permeability and (b) effective permittivity for different scattering loss parameters of Au. The color convention in fig. 9 is followed.

Tables (1)

Tables Icon

Table 1. Extracted parameters in equation (1)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

μ ( ω ) = μ f ω 0 2 ω 2 ω 0 2 + j γ ω ,

Metrics