Abstract

We experimentally perform a comparative study on performance of three different schemes for generation of continuous-wave (CW) supercontinuum by use of nonlinear optical fiber, i.e. our proposed erbium-doped fiber (EDF)-based ring laser scheme incorporating a highly-nonlinear dispersion-shifted fiber (HNL-DSF), the Raman gain-based ring laser scheme incorporating an HNL-DSF, and the conventional scheme based on pump beam single propagation through an HNL-DSF. The three schemes show different physical mechanisms of supercontinuum evolution from a CW pump beam. In particular, our proposed EDF-based ring laser configuration is found to have a better relative intensity noise performance than the other two schemes.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. Mori, K. Sato, H. Takara, and T. Ohara, �??Supercontinuum lightwave source generating 50 GHz spaced optical ITU grid seamlessly over S-, C- and L-bands,�?? Electronics Lett. 39, 544-546 (2003)
    [CrossRef]
  2. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, �??Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,�?? Opt. Lett. 26, 608-610 (2001).
    [CrossRef]
  3. K. Kim, B. R. Washburn, G. Wilpers, C. W. Oates, L. Hollberg, N. R. Newbury, S. A. Diddams, J. W. Nicholson, M. F. Yan, �??Stabilized frequency comb with a self-referenced femtosecond Cr:forsterite laser,�?? Opt. Lett. 30, 932-934 (2005)
    [CrossRef] [PubMed]
  4. H. Kano and H. Hamaguchi, �??Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy,�?? Opt. Lett. 28, 2360-2362 (2003).
    [CrossRef] [PubMed]
  5. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, �??White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,�?? Opt. Lett. 26, 1356-1358 (2001).
    [CrossRef]
  6. P. S. Westbrook, J. W. Nicholson, K. S. Feder, and A. D. Yablon, �??Improved supercontinuum generation through UV processing of highly nonlinear fibers,�?? J. Lightwave Technol. 23, 13-18 (2005).
    [CrossRef]
  7. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, �??Fundamental noise limitations to supercontinuum generation in microstructure fiber,�?? Phys. Rev. Lett. 90, 113904 (2003).
    [CrossRef] [PubMed]
  8. M. Prabhu, N. S. Kim, and K. Ueda, �?? Ultra-broadband CW supercontinuum generation centered at 1483.4 nm from Brillouin/Raman fiber laser,�?? Jpn. J. Appl. Phys. 39, L291-L293 (2000).
    [CrossRef]
  9. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, �??Continuous-wave, high-power, Raman continuum generation in holey fibers,�?? Opt. Lett. 28, 1353-1355 (2003).
    [CrossRef] [PubMed]
  10. W. Zhang, Y. Wang, J. Peng, and X. Liu, �??Broadband high power continuous wave fiber Raman source and its applications,�?? Opt. Comm. 231, 371-374 (2004).
    [CrossRef]
  11. A. K. Abeeluck, C. Headley, and C. G. J�?rgensen, �??High-power supercontinuum generation in highly nonlinear dispersion-shifted fibers by use of a continuous-wave Raman fiber laser,�?? Opt. Lett. 29, 2163-2165 (2004).
    [CrossRef] [PubMed]
  12. A. K. Abeeluck and C. Headley, �??Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation,�?? Opt. Lett. 30, 61-63 (2005).
    [CrossRef] [PubMed]
  13. J. H. Lee, Y. Takushima, and K. Kikuchi, �??Continuous-wave supercontinuum laser based on erbium-doped fiber ring cavity incorporating highly-nonlinear optical fiber,�?? to be published in Opt. Lett. (2005).
  14. V. Roy and P. A.-Vachon, �??Modulation instability in cw erbium-doped fiber ring lasers,�?? in Proc. Quantum Electronics and Laser Science Conference, Baltimore USA, May 2001, paper QThF5.
  15. S. B. Cavalcanti, G. P. Agrawal, and M. Yu, �??Noise amplification in dispersive nonlinear media,�?? Phys. Rev. A 51, 4086-4092 (1995).
    [CrossRef] [PubMed]

Electronics Lett. (1)

K. Mori, K. Sato, H. Takara, and T. Ohara, �??Supercontinuum lightwave source generating 50 GHz spaced optical ITU grid seamlessly over S-, C- and L-bands,�?? Electronics Lett. 39, 544-546 (2003)
[CrossRef]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

M. Prabhu, N. S. Kim, and K. Ueda, �?? Ultra-broadband CW supercontinuum generation centered at 1483.4 nm from Brillouin/Raman fiber laser,�?? Jpn. J. Appl. Phys. 39, L291-L293 (2000).
[CrossRef]

Opt. Comm. (1)

W. Zhang, Y. Wang, J. Peng, and X. Liu, �??Broadband high power continuous wave fiber Raman source and its applications,�?? Opt. Comm. 231, 371-374 (2004).
[CrossRef]

Opt. Lett. (7)

A. K. Abeeluck, C. Headley, and C. G. J�?rgensen, �??High-power supercontinuum generation in highly nonlinear dispersion-shifted fibers by use of a continuous-wave Raman fiber laser,�?? Opt. Lett. 29, 2163-2165 (2004).
[CrossRef] [PubMed]

A. K. Abeeluck and C. Headley, �??Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation,�?? Opt. Lett. 30, 61-63 (2005).
[CrossRef] [PubMed]

A. V. Avdokhin, S. V. Popov, and J. R. Taylor, �??Continuous-wave, high-power, Raman continuum generation in holey fibers,�?? Opt. Lett. 28, 1353-1355 (2003).
[CrossRef] [PubMed]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, �??Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,�?? Opt. Lett. 26, 608-610 (2001).
[CrossRef]

K. Kim, B. R. Washburn, G. Wilpers, C. W. Oates, L. Hollberg, N. R. Newbury, S. A. Diddams, J. W. Nicholson, M. F. Yan, �??Stabilized frequency comb with a self-referenced femtosecond Cr:forsterite laser,�?? Opt. Lett. 30, 932-934 (2005)
[CrossRef] [PubMed]

H. Kano and H. Hamaguchi, �??Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy,�?? Opt. Lett. 28, 2360-2362 (2003).
[CrossRef] [PubMed]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, �??White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,�?? Opt. Lett. 26, 1356-1358 (2001).
[CrossRef]

Phys. Rev. A (1)

S. B. Cavalcanti, G. P. Agrawal, and M. Yu, �??Noise amplification in dispersive nonlinear media,�?? Phys. Rev. A 51, 4086-4092 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, �??Fundamental noise limitations to supercontinuum generation in microstructure fiber,�?? Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

QELS 2001 (1)

V. Roy and P. A.-Vachon, �??Modulation instability in cw erbium-doped fiber ring lasers,�?? in Proc. Quantum Electronics and Laser Science Conference, Baltimore USA, May 2001, paper QThF5.

Other (1)

J. H. Lee, Y. Takushima, and K. Kikuchi, �??Continuous-wave supercontinuum laser based on erbium-doped fiber ring cavity incorporating highly-nonlinear optical fiber,�?? to be published in Opt. Lett. (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental schematics. (a) Type I: EDF-based supercontinuum laser incorporating an HNL-DSF. (b) Type II: Raman-based supercontinuum laser incorporating an HNL-DSF. (c) Type III: Conventional single-pass supercontinuum source. (d) Conventional EDF-based ring laser

Fig. 2.
Fig. 2.

Measured spectral evolution of the optical output as a function of pump power. (a) Type I: EDF-based supercontinuum laser incorporating an HNL-DSF. (b) Type II: Raman-based supercontinuum laser incorporating an HNL-DSF. (c) Type III: Conventional singl-pass supercontinuum source. (d) Conventional EDF-based ring laser

Fig. 3.
Fig. 3.

Measured output optical power versus pump power for the four different configurations.

Fig. 4.
Fig. 4.

Measured relative intensity noise (RIN) of the output beams from the four different configurations together with that of the 1480-nm pump beam.

Metrics