L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of methods to predict the results of subjective refraction from monochromatic wavefront aberration maps,” J. Vis. 4, 329–351 (2004).
[PubMed]
B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
[Crossref]
[PubMed]
R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography”, Opt. Express 12, 2156–2165 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156.
[Crossref]
[PubMed]
B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435.
[Crossref]
[PubMed]
N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480–482 (2004).
[Crossref]
[PubMed]
R. J. Zawadzki, B. A. Bower, M. Zhao, M. Sarunic, S. Laut, J. S. Werner, and J. A. Izatt, “Exposure time dependence of image quality in high-speed retinal in vivo Fourier domain OCT,” in Ophthalmic Technologies XV, F. Manns, P. G. Soederberg, A. Ho, B. E. Stuck, and M. Belkin, eds., Proc. SPIE5688, 45–52 (2005).
L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of methods to predict the results of subjective refraction from monochromatic wavefront aberration maps,” J. Vis. 4, 329–351 (2004).
[PubMed]
L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[Crossref]
B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435.
[Crossref]
[PubMed]
N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480–482 (2004).
[Crossref]
[PubMed]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]
[PubMed]
N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480–482 (2004).
[Crossref]
[PubMed]
B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435.
[Crossref]
[PubMed]
C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comparitive Neurology 292, 497–523 (1990).
[Crossref]
N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480–482 (2004).
[Crossref]
[PubMed]
B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435.
[Crossref]
[PubMed]
R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography”, Opt. Express 12, 2156–2165 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156.
[Crossref]
[PubMed]
B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
[Crossref]
[PubMed]
W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Med. 7, 502–507 (2001).
[Crossref]
[PubMed]
M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2421 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404.
[Crossref]
[PubMed]
B. Grajciar, M. Pircher, A. F. Fercher, and R. A. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13, 1131–1137 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1131.
[Crossref]
[PubMed]
B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
[Crossref]
[PubMed]
R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography”, Opt. Express 12, 2156–2165 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156.
[Crossref]
[PubMed]
R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain versus time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889.
[Crossref]
[PubMed]
B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
[Crossref]
[PubMed]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]
[PubMed]
M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2421 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404.
[Crossref]
[PubMed]
W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Med. 7, 502–507 (2001).
[Crossref]
[PubMed]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]
[PubMed]
M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Comm. 230, 225–238 (2004).
[Crossref]
W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Med. 7, 502–507 (2001).
[Crossref]
[PubMed]
M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Comm. 230, 225–238 (2004).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]
[PubMed]
J. Hecht, Understanding Fiber Optics (Prentice Hall, New Jersey, 1998).
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]
[PubMed]
C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comparitive Neurology 292, 497–523 (1990).
[Crossref]
B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
[Crossref]
[PubMed]
R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography”, Opt. Express 12, 2156–2165 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156.
[Crossref]
[PubMed]
L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of methods to predict the results of subjective refraction from monochromatic wavefront aberration maps,” J. Vis. 4, 329–351 (2004).
[PubMed]
L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[Crossref]
B. Sander, M Larsen, L. Thrane, J. L. Hougaard, and T. M. Jørgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89, 207–212 (2004).
[Crossref]
N. Ling, Y. Zhang, X. Rao, X. Li, C. Wang, Y. Hu, and W. Jiang, “Small table-top adaptive optical systems for human retinal imaging”, in High-Resolution Wavefront Control: Methods, Devices, and Applications IV, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, S. R. Restaino, and R. K. Tyson, eds., Proc. SPIE4825, 99–108 (2002).
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]
[PubMed]
R. J. Zawadzki, B. A. Bower, M. Zhao, M. Sarunic, S. Laut, J. S. Werner, and J. A. Izatt, “Exposure time dependence of image quality in high-speed retinal in vivo Fourier domain OCT,” in Ophthalmic Technologies XV, F. Manns, P. G. Soederberg, A. Ho, B. E. Stuck, and M. Belkin, eds., Proc. SPIE5688, 45–52 (2005).
N. Ling, Y. Zhang, X. Rao, X. Li, C. Wang, Y. Hu, and W. Jiang, “Small table-top adaptive optical systems for human retinal imaging”, in High-Resolution Wavefront Control: Methods, Devices, and Applications IV, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, S. R. Restaino, and R. K. Tyson, eds., Proc. SPIE4825, 99–108 (2002).
W. Jiang and H. Li, “Hartmann-Shack wavefront sensing and control algorithm,” in Adaptive Optics and Optical Structures, J. J. Schulte-in-den-Baeumen and R. K. Tyson, eds., Proc. SPIE1271, 82–93 (1990).
K. E. Thorn, J. Qu, R. J. Jonnal, and D. T. Miller, “Adaptive optics flood-illuminated camera for high speed retinal imaging,” Invest. Ophthalmol. Vis. Sci. 44, E-Abstract 1002 (2003).
D. T. Miller, J. Qu, R. S. Jonnal, and K. Thorn , “Coherence gating and adaptive optics in the eye”, in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, and J. G. Fujimoto, eds., Proc. SPIE4956, 65–72 (2003).
Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, “Single shot retinal imaging with AO spectral OCT,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, V. V. Tuchin, J. A. Izatt, and J. G. Fujimoto, eds. Proc. SPIE5690, 548–555 (2005).
B. Sander, M Larsen, L. Thrane, J. L. Hougaard, and T. M. Jørgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89, 207–212 (2004).
[Crossref]
C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comparitive Neurology 292, 497–523 (1990).
[Crossref]
W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Med. 7, 502–507 (2001).
[Crossref]
[PubMed]
M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2421 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404.
[Crossref]
[PubMed]
M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2421 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404.
[Crossref]
[PubMed]
M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Comm. 230, 225–238 (2004).
[Crossref]
M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Comm. 230, 225–238 (2004).
[Crossref]
B. Sander, M Larsen, L. Thrane, J. L. Hougaard, and T. M. Jørgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89, 207–212 (2004).
[Crossref]
R. J. Zawadzki, B. A. Bower, M. Zhao, M. Sarunic, S. Laut, J. S. Werner, and J. A. Izatt, “Exposure time dependence of image quality in high-speed retinal in vivo Fourier domain OCT,” in Ophthalmic Technologies XV, F. Manns, P. G. Soederberg, A. Ho, B. E. Stuck, and M. Belkin, eds., Proc. SPIE5688, 45–52 (2005).
R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography”, Opt. Express 12, 2156–2165 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156.
[Crossref]
[PubMed]
M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Comm. 230, 225–238 (2004).
[Crossref]
B. Grajciar, M. Pircher, A. F. Fercher, and R. A. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13, 1131–1137 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1131.
[Crossref]
[PubMed]
R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography”, Opt. Express 12, 2156–2165 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156.
[Crossref]
[PubMed]
M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Comm. 230, 225–238 (2004).
[Crossref]
W. Jiang and H. Li, “Hartmann-Shack wavefront sensing and control algorithm,” in Adaptive Optics and Optical Structures, J. J. Schulte-in-den-Baeumen and R. K. Tyson, eds., Proc. SPIE1271, 82–93 (1990).
N. Ling, Y. Zhang, X. Rao, X. Li, C. Wang, Y. Hu, and W. Jiang, “Small table-top adaptive optical systems for human retinal imaging”, in High-Resolution Wavefront Control: Methods, Devices, and Applications IV, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, S. R. Restaino, and R. K. Tyson, eds., Proc. SPIE4825, 99–108 (2002).
J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[Crossref]
D. T. Miller, D. R. Williams, G. M. Morris, and J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[Crossref]
[PubMed]
J. Liang, B. Grimm, S. Goelz, and J. Bille, “Objective measurement of the wave aberrations of the human eye using a Hartmann-Shack wavefront sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
[Crossref]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]
[PubMed]
N. Ling, Y. Zhang, X. Rao, X. Li, C. Wang, Y. Hu, and W. Jiang, “Small table-top adaptive optical systems for human retinal imaging”, in High-Resolution Wavefront Control: Methods, Devices, and Applications IV, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, S. R. Restaino, and R. K. Tyson, eds., Proc. SPIE4825, 99–108 (2002).
D. Malacara, Optical Shop Testing2nd ed. (John Wiley & Sons, New York, 1992), 112–113.
K. E. Thorn, J. Qu, R. J. Jonnal, and D. T. Miller, “Adaptive optics flood-illuminated camera for high speed retinal imaging,” Invest. Ophthalmol. Vis. Sci. 44, E-Abstract 1002 (2003).
J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[Crossref]
D. T. Miller, D. R. Williams, G. M. Morris, and J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[Crossref]
[PubMed]
Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, “Single shot retinal imaging with AO spectral OCT,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, V. V. Tuchin, J. A. Izatt, and J. G. Fujimoto, eds. Proc. SPIE5690, 548–555 (2005).
D. T. Miller, J. Qu, R. S. Jonnal, and K. Thorn , “Coherence gating and adaptive optics in the eye”, in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, and J. G. Fujimoto, eds., Proc. SPIE4956, 65–72 (2003).
W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Med. 7, 502–507 (2001).
[Crossref]
[PubMed]
D. T. Miller, D. R. Williams, G. M. Morris, and J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[Crossref]
[PubMed]
N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480–482 (2004).
[Crossref]
[PubMed]
B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435.
[Crossref]
[PubMed]
B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435.
[Crossref]
[PubMed]
N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480–482 (2004).
[Crossref]
[PubMed]
B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435.
[Crossref]
[PubMed]
B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
[Crossref]
[PubMed]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]
[PubMed]
K. E. Thorn, J. Qu, R. J. Jonnal, and D. T. Miller, “Adaptive optics flood-illuminated camera for high speed retinal imaging,” Invest. Ophthalmol. Vis. Sci. 44, E-Abstract 1002 (2003).
D. T. Miller, J. Qu, R. S. Jonnal, and K. Thorn , “Coherence gating and adaptive optics in the eye”, in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, and J. G. Fujimoto, eds., Proc. SPIE4956, 65–72 (2003).
N. Ling, Y. Zhang, X. Rao, X. Li, C. Wang, Y. Hu, and W. Jiang, “Small table-top adaptive optical systems for human retinal imaging”, in High-Resolution Wavefront Control: Methods, Devices, and Applications IV, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, S. R. Restaino, and R. K. Tyson, eds., Proc. SPIE4825, 99–108 (2002).
Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, “Single shot retinal imaging with AO spectral OCT,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, V. V. Tuchin, J. A. Izatt, and J. G. Fujimoto, eds. Proc. SPIE5690, 548–555 (2005).
B. Sander, M Larsen, L. Thrane, J. L. Hougaard, and T. M. Jørgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89, 207–212 (2004).
[Crossref]
R. J. Zawadzki, B. A. Bower, M. Zhao, M. Sarunic, S. Laut, J. S. Werner, and J. A. Izatt, “Exposure time dependence of image quality in high-speed retinal in vivo Fourier domain OCT,” in Ophthalmic Technologies XV, F. Manns, P. G. Soederberg, A. Ho, B. E. Stuck, and M. Belkin, eds., Proc. SPIE5688, 45–52 (2005).
B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
[Crossref]
[PubMed]
W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Med. 7, 502–507 (2001).
[Crossref]
[PubMed]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]
[PubMed]
C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comparitive Neurology 292, 497–523 (1990).
[Crossref]
M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2421 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404.
[Crossref]
[PubMed]
R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography”, Opt. Express 12, 2156–2165 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156.
[Crossref]
[PubMed]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]
[PubMed]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]
[PubMed]
B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435.
[Crossref]
[PubMed]
N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480–482 (2004).
[Crossref]
[PubMed]
L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of methods to predict the results of subjective refraction from monochromatic wavefront aberration maps,” J. Vis. 4, 329–351 (2004).
[PubMed]
L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[Crossref]
D. T. Miller, J. Qu, R. S. Jonnal, and K. Thorn , “Coherence gating and adaptive optics in the eye”, in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, and J. G. Fujimoto, eds., Proc. SPIE4956, 65–72 (2003).
K. E. Thorn, J. Qu, R. J. Jonnal, and D. T. Miller, “Adaptive optics flood-illuminated camera for high speed retinal imaging,” Invest. Ophthalmol. Vis. Sci. 44, E-Abstract 1002 (2003).
B. Sander, M Larsen, L. Thrane, J. L. Hougaard, and T. M. Jørgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89, 207–212 (2004).
[Crossref]
R. K. Tyson, Principles of Adaptive Optics (Academic Press, New York, 1998).
B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
[Crossref]
[PubMed]
R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography”, Opt. Express 12, 2156–2165 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156.
[Crossref]
[PubMed]
N. Ling, Y. Zhang, X. Rao, X. Li, C. Wang, Y. Hu, and W. Jiang, “Small table-top adaptive optical systems for human retinal imaging”, in High-Resolution Wavefront Control: Methods, Devices, and Applications IV, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, S. R. Restaino, and R. K. Tyson, eds., Proc. SPIE4825, 99–108 (2002).
R. J. Zawadzki, B. A. Bower, M. Zhao, M. Sarunic, S. Laut, J. S. Werner, and J. A. Izatt, “Exposure time dependence of image quality in high-speed retinal in vivo Fourier domain OCT,” in Ophthalmic Technologies XV, F. Manns, P. G. Soederberg, A. Ho, B. E. Stuck, and M. Belkin, eds., Proc. SPIE5688, 45–52 (2005).
H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–643 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-11-631.
[Crossref]
[PubMed]
J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[Crossref]
D. T. Miller, D. R. Williams, G. M. Morris, and J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[Crossref]
[PubMed]
D. R. Williams, “Topography of the foveal cone mosaic in the living human eye,” Vision Res. 28, 433–454 (1988).
[Crossref]
[PubMed]
M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2421 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404.
[Crossref]
[PubMed]
B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435.
[Crossref]
[PubMed]
N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480–482 (2004).
[Crossref]
[PubMed]
R. J. Zawadzki, B. A. Bower, M. Zhao, M. Sarunic, S. Laut, J. S. Werner, and J. A. Izatt, “Exposure time dependence of image quality in high-speed retinal in vivo Fourier domain OCT,” in Ophthalmic Technologies XV, F. Manns, P. G. Soederberg, A. Ho, B. E. Stuck, and M. Belkin, eds., Proc. SPIE5688, 45–52 (2005).
Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, “Single shot retinal imaging with AO spectral OCT,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, V. V. Tuchin, J. A. Izatt, and J. G. Fujimoto, eds. Proc. SPIE5690, 548–555 (2005).
N. Ling, Y. Zhang, X. Rao, X. Li, C. Wang, Y. Hu, and W. Jiang, “Small table-top adaptive optical systems for human retinal imaging”, in High-Resolution Wavefront Control: Methods, Devices, and Applications IV, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, S. R. Restaino, and R. K. Tyson, eds., Proc. SPIE4825, 99–108 (2002).
R. J. Zawadzki, B. A. Bower, M. Zhao, M. Sarunic, S. Laut, J. S. Werner, and J. A. Izatt, “Exposure time dependence of image quality in high-speed retinal in vivo Fourier domain OCT,” in Ophthalmic Technologies XV, F. Manns, P. G. Soederberg, A. Ho, B. E. Stuck, and M. Belkin, eds., Proc. SPIE5688, 45–52 (2005).
B. Sander, M Larsen, L. Thrane, J. L. Hougaard, and T. M. Jørgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol. 89, 207–212 (2004).
[Crossref]
K. E. Thorn, J. Qu, R. J. Jonnal, and D. T. Miller, “Adaptive optics flood-illuminated camera for high speed retinal imaging,” Invest. Ophthalmol. Vis. Sci. 44, E-Abstract 1002 (2003).
C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comparitive Neurology 292, 497–523 (1990).
[Crossref]
J. Liang, B. Grimm, S. Goelz, and J. Bille, “Objective measurement of the wave aberrations of the human eye using a Hartmann-Shack wavefront sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
[Crossref]
J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[Crossref]
L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[Crossref]
L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of methods to predict the results of subjective refraction from monochromatic wavefront aberration maps,” J. Vis. 4, 329–351 (2004).
[PubMed]
W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Med. 7, 502–507 (2001).
[Crossref]
[PubMed]
M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Comm. 230, 225–238 (2004).
[Crossref]
R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain versus time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889.
[Crossref]
[PubMed]
B. Grajciar, M. Pircher, A. F. Fercher, and R. A. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13, 1131–1137 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1131.
[Crossref]
[PubMed]
H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–643 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-11-631.
[Crossref]
[PubMed]
A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-405.
[PubMed]
R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography”, Opt. Express 12, 2156–2165 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156.
[Crossref]
[PubMed]
M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2421 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404.
[Crossref]
[PubMed]
B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435.
[Crossref]
[PubMed]
B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
[Crossref]
[PubMed]
N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480–482 (2004).
[Crossref]
[PubMed]
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]
[PubMed]
D. T. Miller, D. R. Williams, G. M. Morris, and J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[Crossref]
[PubMed]
D. R. Williams, “Topography of the foveal cone mosaic in the living human eye,” Vision Res. 28, 433–454 (1988).
[Crossref]
[PubMed]
D. Malacara, Optical Shop Testing2nd ed. (John Wiley & Sons, New York, 1992), 112–113.
Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, “Single shot retinal imaging with AO spectral OCT,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, V. V. Tuchin, J. A. Izatt, and J. G. Fujimoto, eds. Proc. SPIE5690, 548–555 (2005).
ANSI, American National Standard for the Safe Use of Lasers, ANSI Z136.1 (Laser Institute of America, Orlando, FL, 2000).
R. K. Tyson, Principles of Adaptive Optics (Academic Press, New York, 1998).
D. T. Miller, J. Qu, R. S. Jonnal, and K. Thorn , “Coherence gating and adaptive optics in the eye”, in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, and J. G. Fujimoto, eds., Proc. SPIE4956, 65–72 (2003).
N. Ling, Y. Zhang, X. Rao, X. Li, C. Wang, Y. Hu, and W. Jiang, “Small table-top adaptive optical systems for human retinal imaging”, in High-Resolution Wavefront Control: Methods, Devices, and Applications IV, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, S. R. Restaino, and R. K. Tyson, eds., Proc. SPIE4825, 99–108 (2002).
J. Hecht, Understanding Fiber Optics (Prentice Hall, New Jersey, 1998).
W. Jiang and H. Li, “Hartmann-Shack wavefront sensing and control algorithm,” in Adaptive Optics and Optical Structures, J. J. Schulte-in-den-Baeumen and R. K. Tyson, eds., Proc. SPIE1271, 82–93 (1990).
R. J. Zawadzki, B. A. Bower, M. Zhao, M. Sarunic, S. Laut, J. S. Werner, and J. A. Izatt, “Exposure time dependence of image quality in high-speed retinal in vivo Fourier domain OCT,” in Ophthalmic Technologies XV, F. Manns, P. G. Soederberg, A. Ho, B. E. Stuck, and M. Belkin, eds., Proc. SPIE5688, 45–52 (2005).