Abstract

The realization of ultra low-loss dielectric reflection gratings with diffraction efficiencies between 7% and 0.02% is presented. By placing the grating beneath the highly reflective layerstack scattering was significantly reduced. This concept allows the all-reflective coupling of high laser radiation to high finesse cavities, thereby circumventing thermal effects caused by absorption in the substrate.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H.-J. Fuchs, E.-B. Kley, A. Tünnermann, M. Jupé, and D. Ristau, "Highly efficient transmission gratings in fused silica for CPA systems,�?? App. Opt. 42, 6934-6938 (2003).
    [CrossRef]
  2. Z. S. Liu, S. Tibuleac, D. Shin, P.P. Young, R. Magnusson, "High-efficiency guided mode resonance filter,�?? Opt. Lett. 23, 1556-1558 (1998).
    [CrossRef]
  3. T. Clausnitzer, A.V. Tishchenko, E.B. Kley, J. Fuchs, D. Schelle, O. Parriaux, U. Kroll, "Narrow band, polarization independent free space wave notch filter," accepted for publication in JOSA A.
  4. T. Clausnitzer, H.-J. Fuchs, E.-B. Kley, A. Tuennermann, U. D. Zeitner, "Polarizing metal stripe gratings for a micro-optical polarimeter," in Lithographic and Micromachining Techniques for Optical Component Fabrication II, E.B. Kley, H. P. Herzig, eds., Proc. SPIE 5183, 8-15 (2003).
  5. B Willke et.al., "The GEO 600 gravitational wave detector,�?? Class. Quantum Grav. 19, 1377-1387 (2002).
    [CrossRef]
  6. R. W. P. Drever, �??Concepts for Extending the Ultimate Sensitivity of Interferometric Gravitational Wave Detectors Using Non-Transmissive Optics with Diffractive or Holographic Coupling,�?? in Proceedings of Seventh Marcel Grossman Meeting on General Relativity, M. Kaiser and R. T. Jantzen, eds., 1401-1406 (1995).
  7. A. Bunkowski, O. Burmeister, P. Beyersdorf, K. Danzmann, R. Schnabel, T. Clausnitzer, E.-B. Kley, A. Tünnermann, �??Low-loss grating for coupling to a high-finesse cavity,�?? Opt. Lett. 29, 2342-2344 (2004).
    [CrossRef] [PubMed]
  8. A. Bunkowski, O. Burmeister, K. Danzmann, and R. Schnabel, �??Input-output relations for a three-port grating coupled Fabry-Perot cavity,�?? Opt. Lett. 30, 1183-1185 (2005).
    [CrossRef] [PubMed]
  9. B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, and Lifeng Li, �??Design of high-efficiency dielectric reflection gratings,�?? J. Opt. Soc. Am. A 14, 1124-1136 (1997).
    [CrossRef]
  10. M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon, E. Shults, �??High-efficiency multilayer dielectric reflection gratings,�?? Opt. Lett. 20, 940-942 (1997).
    [CrossRef]
  11. K. Hehl, J. Bischoff, U. Mohaupt, M. Palme, B. Schnabel, L. Wenke, R. Bödefeld, W. Theobald, E. Welsch, R. Sauerbrey, and H. Heyer, �??High-Efficiency Dielectric Reflection Gratings: Design, Fabrication, and Analysis,�?? Appl. Opt. 38, 6257-6271 (1999).
    [CrossRef]
  12. J. Turunen, "Diffraction theory of microrelief gratings", in Micro-optics, H.P. Herzig, ed. (Taylor & Francis, Inc., 1997).
  13. A. Duparré, J. Ferre-Borrull, S. Gliech, G. Notni, J. Steinert, J. M. Bennett, "Surface characterization techniques for determing the root-mean-square roughness and power spectral densities of optical components,�?? Appl. Opt. 41, 154-171 (2002).
    [CrossRef] [PubMed]
  14. E.-B. Kley, T. Clausnitzer, M. Cumme, K. Zöllner, B. Schnabel, A. Stich, "Investigation of Large-Area Gratings Fabricated by Ultrafast E-Beam Writing,�?? in Advanced Optical Manufacturing and Testing Technology, L. Yang, H. M. Pollicove, Q. Xin, J. C. Wyant, eds., Proc. SPIE 4231, 116-125 (2000).
  15. J. Stover, Optical Scattering �?? Measurement and Analysis, (SPIE, Bellingham, WA, 1995).
    [CrossRef]
  16. A. Duparré, �??Light scattering of thin dielectric films,�?? in Handbook of Optical Properties - Thin Films for Optical Coatings, R.E. Hummel, K.H. Guenther, eds. (CRC Press, Boca Raton, 1995).
  17. L. Li, J. Hirsh, �??All-dielectric high-efficiency reflection gratings made with multilayer thin-film coatings,�?? Opt. Lett. 20, 1349-1351 (1995).
    [CrossRef] [PubMed]
  18. J. K. Guha, J. A. Plascyk, �??Low-Absorption Grating Beam Samplers,�?? in Optical Components: Manufacture and Evaluation, D. Nicholson ed., Proc. SPIE 171, 117-124 (1979).

App. Opt. (1)

T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H.-J. Fuchs, E.-B. Kley, A. Tünnermann, M. Jupé, and D. Ristau, "Highly efficient transmission gratings in fused silica for CPA systems,�?? App. Opt. 42, 6934-6938 (2003).
[CrossRef]

Appl. Opt. (2)

Class. Quantum Grav. (1)

B Willke et.al., "The GEO 600 gravitational wave detector,�?? Class. Quantum Grav. 19, 1377-1387 (2002).
[CrossRef]

Handbook of Optical Properties (1)

A. Duparré, �??Light scattering of thin dielectric films,�?? in Handbook of Optical Properties - Thin Films for Optical Coatings, R.E. Hummel, K.H. Guenther, eds. (CRC Press, Boca Raton, 1995).

J. Opt. Soc. Am. A (1)

JOSA A (1)

T. Clausnitzer, A.V. Tishchenko, E.B. Kley, J. Fuchs, D. Schelle, O. Parriaux, U. Kroll, "Narrow band, polarization independent free space wave notch filter," accepted for publication in JOSA A.

Marcel Grossman Mtg. on Gen. Relativity (1)

R. W. P. Drever, �??Concepts for Extending the Ultimate Sensitivity of Interferometric Gravitational Wave Detectors Using Non-Transmissive Optics with Diffractive or Holographic Coupling,�?? in Proceedings of Seventh Marcel Grossman Meeting on General Relativity, M. Kaiser and R. T. Jantzen, eds., 1401-1406 (1995).

Micro-optics (1)

J. Turunen, "Diffraction theory of microrelief gratings", in Micro-optics, H.P. Herzig, ed. (Taylor & Francis, Inc., 1997).

Opt. Lett. (5)

Proc. SPIE (3)

J. K. Guha, J. A. Plascyk, �??Low-Absorption Grating Beam Samplers,�?? in Optical Components: Manufacture and Evaluation, D. Nicholson ed., Proc. SPIE 171, 117-124 (1979).

E.-B. Kley, T. Clausnitzer, M. Cumme, K. Zöllner, B. Schnabel, A. Stich, "Investigation of Large-Area Gratings Fabricated by Ultrafast E-Beam Writing,�?? in Advanced Optical Manufacturing and Testing Technology, L. Yang, H. M. Pollicove, Q. Xin, J. C. Wyant, eds., Proc. SPIE 4231, 116-125 (2000).

T. Clausnitzer, H.-J. Fuchs, E.-B. Kley, A. Tuennermann, U. D. Zeitner, "Polarizing metal stripe gratings for a micro-optical polarimeter," in Lithographic and Micromachining Techniques for Optical Component Fabrication II, E.B. Kley, H. P. Herzig, eds., Proc. SPIE 5183, 8-15 (2003).

Other (1)

J. Stover, Optical Scattering �?? Measurement and Analysis, (SPIE, Bellingham, WA, 1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Gratings as cavity coupler (a) high efficiency grating: coupling by the specular 0th order (b) low efficiency grating: coupling by the weak -1st diffraction order

Fig. 2.
Fig. 2.

Two approaches to combine grating and layerstack: (a) grating on top, (b) grating beneath the stack

Fig. 3.
Fig. 3.

(a) Incidence from 2nd order Littrow angle and (b) retroreflection for normal incidence. The transmission T (blue) is defined as the sum of all transmitted diffraction orders. Due to the same optical path h1 is the same in (a) and (b) (red arrows).

Fig. 4.
Fig. 4.

Measured reflection spectrum of the dielectric layerstack composed of Ta2O5 and SiO2 (λ=1.064µm)

Fig. 5.
Fig. 5.

Theoretical calculation of the diffraction efficiency as a function of groove depth hg and the thickness of the residual layer beneath the grating tr

Fig. 6.
Fig. 6.

Angle resolved scattering measurement of the grating on top of the multilayer (λ=1.064µm)

Fig. 7.
Fig. 7.

Scanning electron microscope images of coated gratings

Fig. 8.
Fig. 8.

(a) Diffraction efficiency and (b) 0° transmission measured by an integrating sphere

Fig. 9.
Fig. 9.

Angle resolved scattering measurement (λ=1064 nm) of gratings coated by the multilayer

Fig. 10.
Fig. 10.

Angle resolved scattering measurement (λ=1064 nm) of a grating coated by a 1.5µm thick SiO2 layer and the HR-stack

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R 0 ° = 1 ( 2 η 1 + T + S ) .
sin φ m = sin φ in + m λ d ,
sin φ in = λ d .

Metrics