Abstract

We present a novel method for three-dimensional optical splitter that have U-grooves, which are used for fiber alignment, within a fused silica glass using near-IR femtosecond laser pulses. The fiber aligned optical splitter has a low insertion loss, less than 4 dB, including an intrinsic splitting loss of 3 dB and excess loss due to the passive alignment of a single-mode fiber. The output field pattern is presented, demonstrating the splitting ratio of the optical splitter is approximately 1:1. Finally, we demonstrate the utility of the femtosecond laser writing of periodic patterns by fabricating the submicron line and dot patterns inside the silica glass, which is applicable to 3-D optical memory.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, �??Photowritten optical waveguides in various glasses with ultrashort pulse laser,�?? Appl. Phys. Lett. 71, 3329-3331 (1997).
    [CrossRef]
  2. K. Hirao and K. Miura, �??Writing waveguides and gratings in silica and related materials by a femtosecond laser,�?? J. Non-Cryst. Solids. 239, 91-95 (1998).
    [CrossRef]
  3. K. Kawamura, N. Sarukura, and K. Hirao, �??Holographic encoding of fine-pitched micrograting structures in amorphous SiO2 thin films on silicon by a single femtosecond laser pulses,�?? Appl. Phys. Lett. 78, 1038-1040 (2001).
    [CrossRef]
  4. M. Li, M. Ishizuka, X. Liu, Y. Sugimoto, N. Ikeda, and K. Asakawa, �??Nanostructuring in submicron-level waveguides with femtosecond laser pulses,�?? Opt. Commun. 212, 159-163 (2002).
    [CrossRef]
  5. D. Grobnic, C. W. Smelser, S. J. Mihilov, R. B. Walker, and P. Lu, �??Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,�?? IEEE Photon. Technol. Lett. 16, 1864-1866 (2004).
    [CrossRef]
  6. Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and D. K. Killinger, �??Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,�?? Electron. Lett. 36, 396-398 (2000).
    [CrossRef]
  7. A. M. Streltsov and N. F. Borrelli, �??Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,�?? Opt. Lett. 26, 42-43 (2001).
    [CrossRef]
  8. L. Gui, B. Xu, and T. C. Chong, �??Microstructure in Lithium Niobate by use of focused femtosecond laser pulses,�?? IEEE Photon. Technol. Lett. 16, 1337-1339 (2004).
    [CrossRef]
  9. C. Florea and K. A. Winick, �??Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses,�?? J. Lightwave Technol. 21, 246-253 (2003).
    [CrossRef]
  10. M. Takahashi, T. Ido, and T. Nagara, �??A polymer PLC platform with a fiber-alignment V-groove for a low-cost 10-GbE WDM transmitter,�?? J. Lightwave Technol. 16, 266-268 (2004).

Appl. Phys. Lett.

Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, �??Photowritten optical waveguides in various glasses with ultrashort pulse laser,�?? Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

K. Kawamura, N. Sarukura, and K. Hirao, �??Holographic encoding of fine-pitched micrograting structures in amorphous SiO2 thin films on silicon by a single femtosecond laser pulses,�?? Appl. Phys. Lett. 78, 1038-1040 (2001).
[CrossRef]

Electron. Lett.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and D. K. Killinger, �??Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,�?? Electron. Lett. 36, 396-398 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

L. Gui, B. Xu, and T. C. Chong, �??Microstructure in Lithium Niobate by use of focused femtosecond laser pulses,�?? IEEE Photon. Technol. Lett. 16, 1337-1339 (2004).
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihilov, R. B. Walker, and P. Lu, �??Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,�?? IEEE Photon. Technol. Lett. 16, 1864-1866 (2004).
[CrossRef]

J. Lightwave Technol.

C. Florea and K. A. Winick, �??Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses,�?? J. Lightwave Technol. 21, 246-253 (2003).
[CrossRef]

M. Takahashi, T. Ido, and T. Nagara, �??A polymer PLC platform with a fiber-alignment V-groove for a low-cost 10-GbE WDM transmitter,�?? J. Lightwave Technol. 16, 266-268 (2004).

J. Non-Cryst. Solids.

K. Hirao and K. Miura, �??Writing waveguides and gratings in silica and related materials by a femtosecond laser,�?? J. Non-Cryst. Solids. 239, 91-95 (1998).
[CrossRef]

Opt. Commun.

M. Li, M. Ishizuka, X. Liu, Y. Sugimoto, N. Ikeda, and K. Asakawa, �??Nanostructuring in submicron-level waveguides with femtosecond laser pulses,�?? Opt. Commun. 212, 159-163 (2002).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Optical micrograph of waveguides written inside fused silica glass using a 300–500 nJ, 1 kHz, and 100 fs pulse train focused with a 0.42 NA microscope objective. The sample was translated at 50 µm/s.

Fig. 2.
Fig. 2.

Schematic diagram of U-grooved optical splitter.

Fig. 3.
Fig. 3.

Microscope image of U-groove machined by femtosecond laser pulses; (a) top view (×500), (b) side view (×500).

Fig. 4.
Fig. 4.

Fiber aligned one-input and two-output channels of U-grooved optical splitter.

Fig. 5.
Fig. 5.

Far-field pattern of the optical splitter’s output with a 1550 nm laser beam coupled into the input waveguide. The splitting ratio is approximately 1:1.

Fig. 6.
Fig. 6.

Microscope image of a 2-µm period (a) line and (b) dot patterns directly written inside fused silica with 320 nJ pulse energy. Line width and dot diameter are 0.5 µm.

Fig. 7.
Fig. 7.

Optical microscope image of 3-D dot patterns consisted of three layers, which is applicable to optical memory. Each layer displays the letter (a) I, (b) C, and (c) U, respectively. The layer gap and dot pitch are 7 µm and 2 µm, respectively.

Metrics