Abstract

We demonstrate scanning over 1.1 nm with a frequency shifting ring source using a Ytterbium doped fiber amplifier (YDFA). It is, to the best of our knowledge, the first time an YDFA has been used in this configuration, and operation in the 1–1.1 µm wavelength range is made possible. We demonstrate a novel timing scheme that suppresses unwanted Q-switching behavior. Finally, using a concatenated numerical amplifier model, we are able to accurately predict the behavior of the source.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. Coppin and T. G. Hodgkinson, �??Novel optical frequency comb synthesis using optical feedback,�?? Electron. Lett. 26, 28-30 (1990).
    [CrossRef]
  2. T. G . Hodgkinson and P. Coppin, �??Pulsed operation of an optical feedback frequency synthetiser,�?? Electron. Lett. 26, 1155-1157 (1990).
    [CrossRef]
  3. K. Shimizu, T. Horiguchi and Y. Koyamada, �??Frequency translation of light waves by propagation around an optical ring circuit containing a frequency shifter: 1. Experiment,�?? Appl. Opt. 32, 6718-6726 (1993).
    [CrossRef] [PubMed]
  4. H. Takesue and T. Horiguchi, �??Broad-band lightwave synthesized frequency sweeper using synchronous filtering,�?? J. Lightwave Technol. 22, 775-762 (2004).
    [CrossRef]
  5. B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A.F. Fercher, C. Schubert, P.K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J.C. Knight and P. St. J. Russel, �??Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,�?? Opt. Express 11, 1980-1986 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-1980.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-1980</a>
    [CrossRef] [PubMed]
  6. Y. Wang, J. S. Nelson, Z. Chen, B. J. Reiser, R. S. Chuck and R. S. Windeler, �??Optimal wavelength for ultrahigh-resolution optical coherence tomography,�?? Opt. Express 11, 1411-1417 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1411.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1411</a>
    [CrossRef] [PubMed]
  7. P. Adel and C. Fallnich, �??High-power ultra-broadband mode-locked Yb3+-fiber laser with 118 nm bandwidth,�?? Opt. Express 10, 622-627 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-622">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-622</a>
    [PubMed]
  8. R. Paschotta, J. Nilsson, A. C. Tropper and D. C. Hanna, �??Ytterbium-doped fiber amplifiers,�?? IEEE J. Quantum Electron. 33, 1049-1056 (1997).
    [CrossRef]
  9. H.M. Pask, R.J. Carman, D.C. Hanna, A.C. Tropper, C.J. Mackechnie, P.R. Barber and J.M. Dawes, �??Ytterbiumdoped silica fiber lasers: Versatile sources for the 1-1.2 µm region,�?? IEEE J. Select. Topics Quantum Electron 1, 2-13 (1995).
    [CrossRef]
  10. K. Shimizu, T. Horiguchi and Y. Koyamada, �??Frequency translation of light waves by propagation around an optical ring circuit containing a frequency shifter: 2. Theoretical-analysis,�?? Appl. Opt. 33, 3209-3219 (1994).
    [CrossRef] [PubMed]
  11. P.Welssels and C. Fallnich, �??Noise figure measurements on Nd and Yb doped double-clad fiber amplifiers,�?? Opt. Express 11, 1531-1536 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1531.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1531</a>

Appl. Opt.

Electron. Lett.

P. Coppin and T. G. Hodgkinson, �??Novel optical frequency comb synthesis using optical feedback,�?? Electron. Lett. 26, 28-30 (1990).
[CrossRef]

T. G . Hodgkinson and P. Coppin, �??Pulsed operation of an optical feedback frequency synthetiser,�?? Electron. Lett. 26, 1155-1157 (1990).
[CrossRef]

IEEE J. Quantum Electron.

R. Paschotta, J. Nilsson, A. C. Tropper and D. C. Hanna, �??Ytterbium-doped fiber amplifiers,�?? IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

IEEE J. Select. Topics Quantum Electron

H.M. Pask, R.J. Carman, D.C. Hanna, A.C. Tropper, C.J. Mackechnie, P.R. Barber and J.M. Dawes, �??Ytterbiumdoped silica fiber lasers: Versatile sources for the 1-1.2 µm region,�?? IEEE J. Select. Topics Quantum Electron 1, 2-13 (1995).
[CrossRef]

J. Lightwave Technol.

H. Takesue and T. Horiguchi, �??Broad-band lightwave synthesized frequency sweeper using synchronous filtering,�?? J. Lightwave Technol. 22, 775-762 (2004).
[CrossRef]

Opt. Express

Supplementary Material (2)

» Media 1: AVI (1105 KB)     
» Media 2: AVI (3262 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Principal sketch of the LSFS configuration (a), and the associated ideal output signal power and optical frequency (b).

Fig. 2.
Fig. 2.

LSFS used for the experiments.

Fig. 3.
Fig. 3.

Timing diagram for the novel Q-switch suppressing timing scheme (a) and the traditional timing scheme (b).

Fig. 4.
Fig. 4.

AC (a) and DC (b) coupled detector signals measured at the output port of the source.

Fig. 5.
Fig. 5.

Zoom of the AC detector signal showing individual pulses. (Movie of the pulse train, 1.2 Mb).

Fig. 6.
Fig. 6.

Principle in deriving the modulation depth.

Fig. 7.
Fig. 7.

Modulation depth derived from the recorded AC-coupled detector signal, and normalized to the stable domain.

Fig. 8.
Fig. 8.

Modulation depth/signal development predicted by the concatenated numerical amplifier model. Model parameters are shown in Table 1. (Movie showing development in signal and noise spectral content over time, 3.3 Mb)

Fig. 9.
Fig. 9.

Comparison between the experimentally derived modulation depth and the modulation depth predicted by the numerical model. The filter offset parameter Δν f ilt has been set to 160 GHz; other parameters as in Table 1.

Tables (1)

Tables Icon

Table 1. Parameters used to generate the curves in Fig. 8.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

t 0 : Scanning cycle is initiated t 1 = t 0 + τ p r e s e e d t 2 = t 0 + τ p r e s e e d + τ p u l s e τ S R A O M t 3 : End of a scanning cycle ~ 2 ms ,
P sat = P s i + P n i ,
P s i + 1 = P s i T ( ν s i + 1 ) G i ,
p n i + 1 [ ν n j ] = p n i [ ν n j ] T ( ν n j + 1 ) G i ± Δ f Δ ν n ( p n i [ ν n j 1 ] p n [ ν n j + 1 ] )
+ 2 n sp ( G i + 1 1 ) h ν n j ,
P n i = j p n i [ ν n j ] .
G i = P sat P s i T ( ν s i + 1 ) j p n i [ ν n j ] T ( ν n j + 1 ) ± Δ f Δ ν n ( p n i [ ν n j 1 ] p n [ ν n j + 1 ] ) + 2 n sp ( G i + 1 1 ) h ν n j .

Metrics