Abstract

We demonstrate a high-speed multi-functional spectral-domain optical coherence tomography system, using a broadband light source centered at 1.3 µm and two InGaAs line scan cameras capable of acquiring individual axial scans in 24.4 µs, at a rate of 18,500 axial scans per second. Fundamental limitations on the accuracy of phase determination as functions of signal-to-noise ratio and lateral scan speed are presented and their relative contributions are compared. The consequences of phase accuracy are discussed for both Doppler and polarization-sensitive OCT measurements. A birefringence artifact and a calibration procedure to remove this artifact are explained. Images of a chicken breast tissue sample acquired with the system were compared to those taken with a time-domain OCT system for birefringence measurement verification. The ability of the system to image pulsatile flow in the dermis and to perform functional imaging of large volumes demonstrates the clinical potential of multi-functional spectral-domain OCT.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178 (1991).
    [CrossRef] [PubMed]
  2. E.A. Swanson, J.A. Izatt, M.R. Hee, D. Huang, C.P. Lin, J.S. Schuman, C.A. Puliafito, and J.G. Fujimoto, "In-vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864 (1993).
    [CrossRef] [PubMed]
  3. B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishioka, "High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography," Gastrointestinal Endoscopy 51, 467 (2000).
    [CrossRef] [PubMed]
  4. I.K. Jang, G.J. Tearney, D.H. Kang, Y.C. Moon, S.J. Park, S.W. Park, K.B. Seung, S.L. Houser, M. Shishkov, E. Pomerantsev, H.T. Aretz, and B.E. Bouma, "Comparison of optical coherence tomography and intravascular ultrasound for detection of coronary plaques with large lipid-core in living patients," Circulation 102, 509 (2000).
  5. A.F. Fercher, C.K. Hitzenberger, G. Kamp, and S.Y. Elzaiat, "Measurement of Intraocular Distances by Backscattering Spectral Interferometry," Optics Communications 117, 43 (1995).
    [CrossRef]
  6. G. Hausler and M.W. Lindner, "Coherence Radar and Spectral Radar - New Tools for Dermatological Diagnosis," J. Biomed. Opt. 3, 21 (1998).
    [CrossRef]
  7. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A.F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," Journal of Biomedical Optics 7, 457 (2002).
    [CrossRef] [PubMed]
  8. S.H. Yun, G.J. Tearney, J.F. de Boer, N. Iftimia, and B.E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953</a>.
    [CrossRef] [PubMed]
  9. P. Andretzky, M.W. Lindner, J.M. Hermann, A. Schultz, M. Konzog, F. Kiesewetter, and G. Hausler, "Optical coherence tomography by spectral radar: dynamic range estimation and in vivo measurements of skin," Proc. SPIE 3567, 78 (1998).
    [CrossRef]
  10. T. Mitsui, "Dynamic range of optical reflectometry with spectral interferometry," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 38, 6133 (1999).
  11. R. Leitgeb, C.K. Hitzenberger, and A.F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>.
    [CrossRef] [PubMed]
  12. J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, and B.E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067 (2003).
    [CrossRef] [PubMed]
  13. M.A. Choma, M.V. Sarunic, C.H. Yang, and J.A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183</a>.
    [CrossRef] [PubMed]
  14. N. Nassif, B. Cense, B.H. Park, S.H. Yun, T.C. Chen, B.E. Bouma, G.J. Tearney, and J.F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480 (2004).
    [CrossRef]
  15. N.A. Nassif, B. Cense, B.H. Park, M.C. Pierce, S.H. Yun, B.E. Bouma, G.J. Tearney, T.C. Chen, and J.F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367</a>.
    [CrossRef] [PubMed]
  16. S.H. Yun, G.J. Tearney, B.E. Bouma, B.H. Park, and J.F. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength," Opt. Express 11, 3598 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3598">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3598</a>.
    [CrossRef] [PubMed]
  17. B.H. Park, C. Saxer, S.M. Srinivas, J.S. Nelson, and J.F. de Boer, "In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography," J. Biomed. Opt. 6, 474 (2001).
    [CrossRef] [PubMed]
  18. M.C. Pierce, R.L. Sheridan, B.H. Park, B. Cense, and J.F. de Boer, "Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography," Burns 30, 511 (2004).
    [CrossRef] [PubMed]
  19. B. Cense, T.C. Chen, B.H. Park, M.C. Pierce, and J.F. de Boer, "In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography," Optics Letters 27, 1610 (2002).
    [CrossRef]
  20. D. Fried, J. Xie, S. Shafi, J.D.B. Featherstone, T.M. Breunig, and C. Le, "Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography," Journal of Biomedical Optics 7, 618 (2002).
    [CrossRef] [PubMed]
  21. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography," Optics Letters 27, 1803 (2002).
    [CrossRef]
  22. Y. Yasuno, S. Makita, T. Endo, M. Itoh, and T. Yatagai, "Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023 (2004).
    [CrossRef]
  23. X.J. Wang, T.E. Milner, and J.S. Nelson, "Characterization of Fluid-Flow Velocity by Optical Doppler Tomography," Opt. Lett. 20, 1337 (1995).
    [CrossRef] [PubMed]
  24. Z.P. Chen, T.E. Milner, D. Dave, and J.S. Nelson, "Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media," Opt. Lett. 22, 64 (1997).
    [CrossRef] [PubMed]
  25. J.A. Izatt, M.D. Kulkami, S. Yazdanfar, J.K. Barton, and A.J. Welch, "In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomograghy," Opt. Lett. 22, 1439 (1997).
    [CrossRef]
  26. Y.H. Zhao, Z.P. Chen, C. Saxer, S.H. Xiang, J.F. de Boer, and J.S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114 (2000).
    [CrossRef]
  27. R.A. Leitgeb, L. Schmetterer, C.K. Hitzenberger, A.F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett. 29, 171 (2004).
    [CrossRef] [PubMed]
  28. J.S. Nelson, K.M. Kelly, Y.H. Zhao, and Z.P. Chen, "Imaging blood flow in human Port-wine stain in situ and in real time using optical Doppler tomography," Arch. Dermatol. 137, 741 (2001).
    [PubMed]
  29. R.A. Leitgeb, L. Schmetterer, W. Drexler, A.F. Fercher, R.J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116</a>.
    [CrossRef] [PubMed]
  30. B.R. White, M.C. Pierce, N. Nassif, B. Cense, B.H. Park, G.J. Tearney, B.E. Bouma, T.C. Chen, and J.F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490</a>.
    [CrossRef] [PubMed]
  31. B.H. Park, M.C. Pierce, B. Cense, and J.F. de Boer, "Real-time multi-functional optical coherence tomography," Opt. Express 11, 782 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-782">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-782</a>.
    [CrossRef] [PubMed]
  32. Y.H. Zhao, Z.P. Chen, C. Saxer, Q.M. Shen, S.H. Xiang, J.F. de Boer, and J.S. Nelson, "Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow," Opt. Lett. 25, 1358 (2000).
    [CrossRef]
  33. B.H. Park, M.C. Pierce, B. Cense, and J.F. de Boer, "Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components," Opt. Lett. 29, 2512 (2004).
    [CrossRef] [PubMed]
  34. M.C. Pierce, B.H. Park, B. Cense, and J.F. de Boer, "Simultaneous intensity, birefringence, and flow measurements with high speed fiber-based optical coherence tomography," Opt. Lett. 27, 1534 (2002).
    [CrossRef]
  35. S. Yazdanfar, C.H. Yang, M.V. Sarunic, and J.A. Izatt, "Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound," Opt. Express 13, 410 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-410">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-410</a>.
    [CrossRef]
  36. S.H. Yun, G.J. Tearney, J.F. de Boer, and B.E. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2977">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2977</a>.
    [CrossRef] [PubMed]
  37. A.M. Rollins, M.D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J.A. Izatt, "In vivo video rate optical coherence tomography," Opt. Express 3, 219 (1998), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219</a>.
    [CrossRef] [PubMed]
  38. V. Westphal, S. Yazdanfar, A.M. Rollins, and J.A. Izatt, "Real-time high velocity-resolution color Doppler optical coherence tomography," Opt. Lett. 27, 34 (2002).
    [CrossRef]
  39. V.X.D. Yang, M.L. Gordon, E. Seng-Yue, S. Lo, B. Qi, J. Pekar, M. A., B.C. Wilson, and I.A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): imaging in vivo cardiac dynamics of xenopus laevis," Opt. Express 11, 1650 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1650">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1650</a>.
    [CrossRef] [PubMed]
  40. B.H. Park, M.C. Pierce, B. Cense, and J.F. de Boer, "Optic axis determination for fiber-based polarizationsensitive optical coherence tomography," Opt. Lett. (submitted for review), (2005).
    [CrossRef] [PubMed]

Appl. Phys. Lett.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, and T. Yatagai, "Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023 (2004).
[CrossRef]

Arch. Dermatol.

J.S. Nelson, K.M. Kelly, Y.H. Zhao, and Z.P. Chen, "Imaging blood flow in human Port-wine stain in situ and in real time using optical Doppler tomography," Arch. Dermatol. 137, 741 (2001).
[PubMed]

Burns

M.C. Pierce, R.L. Sheridan, B.H. Park, B. Cense, and J.F. de Boer, "Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography," Burns 30, 511 (2004).
[CrossRef] [PubMed]

Circulation

I.K. Jang, G.J. Tearney, D.H. Kang, Y.C. Moon, S.J. Park, S.W. Park, K.B. Seung, S.L. Houser, M. Shishkov, E. Pomerantsev, H.T. Aretz, and B.E. Bouma, "Comparison of optical coherence tomography and intravascular ultrasound for detection of coronary plaques with large lipid-core in living patients," Circulation 102, 509 (2000).

Gastrointestinal Endoscopy

B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishioka, "High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography," Gastrointestinal Endoscopy 51, 467 (2000).
[CrossRef] [PubMed]

J. Biomed. Opt.

B.H. Park, C. Saxer, S.M. Srinivas, J.S. Nelson, and J.F. de Boer, "In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography," J. Biomed. Opt. 6, 474 (2001).
[CrossRef] [PubMed]

G. Hausler and M.W. Lindner, "Coherence Radar and Spectral Radar - New Tools for Dermatological Diagnosis," J. Biomed. Opt. 3, 21 (1998).
[CrossRef]

Journal of Biomedical Optics

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A.F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," Journal of Biomedical Optics 7, 457 (2002).
[CrossRef] [PubMed]

D. Fried, J. Xie, S. Shafi, J.D.B. Featherstone, T.M. Breunig, and C. Le, "Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography," Journal of Biomedical Optics 7, 618 (2002).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. Part 1

T. Mitsui, "Dynamic range of optical reflectometry with spectral interferometry," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 38, 6133 (1999).

Opt. Express

R. Leitgeb, C.K. Hitzenberger, and A.F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>.
[CrossRef] [PubMed]

M.A. Choma, M.V. Sarunic, C.H. Yang, and J.A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183</a>.
[CrossRef] [PubMed]

N.A. Nassif, B. Cense, B.H. Park, M.C. Pierce, S.H. Yun, B.E. Bouma, G.J. Tearney, T.C. Chen, and J.F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367</a>.
[CrossRef] [PubMed]

S.H. Yun, G.J. Tearney, B.E. Bouma, B.H. Park, and J.F. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength," Opt. Express 11, 3598 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3598">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3598</a>.
[CrossRef] [PubMed]

S.H. Yun, G.J. Tearney, J.F. de Boer, N. Iftimia, and B.E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953</a>.
[CrossRef] [PubMed]

R.A. Leitgeb, L. Schmetterer, W. Drexler, A.F. Fercher, R.J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116</a>.
[CrossRef] [PubMed]

B.R. White, M.C. Pierce, N. Nassif, B. Cense, B.H. Park, G.J. Tearney, B.E. Bouma, T.C. Chen, and J.F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490</a>.
[CrossRef] [PubMed]

B.H. Park, M.C. Pierce, B. Cense, and J.F. de Boer, "Real-time multi-functional optical coherence tomography," Opt. Express 11, 782 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-782">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-782</a>.
[CrossRef] [PubMed]

S. Yazdanfar, C.H. Yang, M.V. Sarunic, and J.A. Izatt, "Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound," Opt. Express 13, 410 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-410">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-410</a>.
[CrossRef]

S.H. Yun, G.J. Tearney, J.F. de Boer, and B.E. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2977">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2977</a>.
[CrossRef] [PubMed]

A.M. Rollins, M.D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J.A. Izatt, "In vivo video rate optical coherence tomography," Opt. Express 3, 219 (1998), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219</a>.
[CrossRef] [PubMed]

V.X.D. Yang, M.L. Gordon, E. Seng-Yue, S. Lo, B. Qi, J. Pekar, M. A., B.C. Wilson, and I.A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): imaging in vivo cardiac dynamics of xenopus laevis," Opt. Express 11, 1650 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1650">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1650</a>.
[CrossRef] [PubMed]

Opt. Lett.

B.H. Park, M.C. Pierce, B. Cense, and J.F. de Boer, "Optic axis determination for fiber-based polarizationsensitive optical coherence tomography," Opt. Lett. (submitted for review), (2005).
[CrossRef] [PubMed]

V. Westphal, S. Yazdanfar, A.M. Rollins, and J.A. Izatt, "Real-time high velocity-resolution color Doppler optical coherence tomography," Opt. Lett. 27, 34 (2002).
[CrossRef]

Y.H. Zhao, Z.P. Chen, C. Saxer, Q.M. Shen, S.H. Xiang, J.F. de Boer, and J.S. Nelson, "Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow," Opt. Lett. 25, 1358 (2000).
[CrossRef]

B.H. Park, M.C. Pierce, B. Cense, and J.F. de Boer, "Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components," Opt. Lett. 29, 2512 (2004).
[CrossRef] [PubMed]

M.C. Pierce, B.H. Park, B. Cense, and J.F. de Boer, "Simultaneous intensity, birefringence, and flow measurements with high speed fiber-based optical coherence tomography," Opt. Lett. 27, 1534 (2002).
[CrossRef]

X.J. Wang, T.E. Milner, and J.S. Nelson, "Characterization of Fluid-Flow Velocity by Optical Doppler Tomography," Opt. Lett. 20, 1337 (1995).
[CrossRef] [PubMed]

Z.P. Chen, T.E. Milner, D. Dave, and J.S. Nelson, "Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media," Opt. Lett. 22, 64 (1997).
[CrossRef] [PubMed]

J.A. Izatt, M.D. Kulkami, S. Yazdanfar, J.K. Barton, and A.J. Welch, "In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomograghy," Opt. Lett. 22, 1439 (1997).
[CrossRef]

Y.H. Zhao, Z.P. Chen, C. Saxer, S.H. Xiang, J.F. de Boer, and J.S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114 (2000).
[CrossRef]

R.A. Leitgeb, L. Schmetterer, C.K. Hitzenberger, A.F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett. 29, 171 (2004).
[CrossRef] [PubMed]

E.A. Swanson, J.A. Izatt, M.R. Hee, D. Huang, C.P. Lin, J.S. Schuman, C.A. Puliafito, and J.G. Fujimoto, "In-vivo retinal imaging by optical coherence tomography," Opt. Lett. 18, 1864 (1993).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B.H. Park, S.H. Yun, T.C. Chen, B.E. Bouma, G.J. Tearney, and J.F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480 (2004).
[CrossRef]

J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, and B.E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067 (2003).
[CrossRef] [PubMed]

Optics Communications

A.F. Fercher, C.K. Hitzenberger, G. Kamp, and S.Y. Elzaiat, "Measurement of Intraocular Distances by Backscattering Spectral Interferometry," Optics Communications 117, 43 (1995).
[CrossRef]

Optics Letters

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography," Optics Letters 27, 1803 (2002).
[CrossRef]

B. Cense, T.C. Chen, B.H. Park, M.C. Pierce, and J.F. de Boer, "In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography," Optics Letters 27, 1610 (2002).
[CrossRef]

Proc. SPIE

P. Andretzky, M.W. Lindner, J.M. Hermann, A. Schultz, M. Konzog, F. Kiesewetter, and G. Hausler, "Optical coherence tomography by spectral radar: dynamic range estimation and in vivo measurements of skin," Proc. SPIE 3567, 78 (1998).
[CrossRef]

Science

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178 (1991).
[CrossRef] [PubMed]

Supplementary Material (4)

» Media 1: MOV (2186 KB)     
» Media 2: MOV (2150 KB)     
» Media 3: MOV (1057 KB)     
» Media 4: MOV (2360 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Diagram of the multi-functional SD-OCT system (pbs: polarizing beam splitter, pm: polarization modulator, oc: optical circulator, 90/10: fiber splitter, pc: static polarization controller, ndf: neutral density filter, g: transmission grating, pol: polarizer, lsc: line scan camera).

Fig. 2.
Fig. 2.

A screen capture of the real-time data acquisition software, taken while imaging a weak intralipid solution flowing through small tubes. There are four main displays: unprocessed spectral information is shown in the upper right, a standard OCT image (reflected intensity) is in the middle left, polarization information is shown in the middle right, and flow information is displayed in the lower left corner.

Fig. 3.
Fig. 3.

Ray diagram of light propagation to one camera in the spectrometer depicting the mapping between wavelength and pixel number. θi is the incident angle on the grating. θc is the transmitted angle for wavelength λc that travels through the center of the lens of focal length F. xc is the distance from the first pixel to the position of λc on the line scan camera array, which has a pixel width of w.

Fig. 4.
Fig. 4.

(2.13 MB) Movie depicting a large volume scan of the fingerprint region. A logarithmic gray-scale was used to display the entire intensity dynamic range. The volume is composed of 104 frames covering a length of 6.5 mm, where individual image frames are composed of 1024 depth profiles covering a width of 8 mm, and was acquired in 5.75 seconds.

Fig. 5.
Fig. 5.

Standard deviation, σΔϕ, of the phase difference between the front and back surfaces of a glass slide as a function of signal-to-noise ratio (SNR) on a log-log scale. Squares: standard deviation over 1024 measurements. Line: theoretical curve (Eq. 2 in text).

Fig. 6.
Fig. 6.

Standard deviation of the phase differences measured within a uniformly scattering medium as a function of the ratio between the lateral distance moved between depth scans to the focused beam width in the sample. Squares: standard deviation over 1024 depth profiles. Lines: theoretical curves corresponding to overall phase error (σphase ), and components due to lateral scanning (σΔx, Eq. 2) and SNR (σΔϕ, Eq. 3). Inset: lateral scan speed relative to the beam width corresponding to a phase error equal to that for a particular SNR (σΔϕΔx).

Fig. 7.
Fig. 7.

(2.09 MB) Beating heart of a xenopus laevis tadpole (1024 depth profiles spanning 0.8 mm in width, 3.87 seconds). Intensity images are displayed on the left, with the ventricle and atria of the heart clearly visible in the upper portions of the imaged region. Unwrapped bidirectional flow is displayed in the middle (gray scale from −3π to 3π) and right (image width and depth on the XY-plane, phase shift indicated by Z-axis), where flow in the ventricle and one atria are especially apparent.

Fig. 8.
Fig. 8.

Representative TD- and SD-OCT images of the same chicken breast muscle sample. The width of the images was 4.0 mm, and the depth was 1.2 and 1.4 mm for the TD- and SD-OCT images, respectively. Each set of images (TD,SD) are composed of an intensity image (a,c) and phase retardation image (b,d). The unwrapped phase retardation profiles were averaged over the full width of the image (e). Intensity images are gray-scaled encoded over the dynamic range of the image, and phase retardation images are gray-scaled from black to white, representing phase retardations from −π to π radians.

Fig. 9.
Fig. 9.

A. Optic axis orientation in a Poincaré sphere representation of the calculated optic axes (arrows) for various set orientations of the tissue sample optic axis. The plane (dotted circle) in which these optic axes lie was determined by least-squares fitting. B. Calculated optic axis orientation as a function of set orientation relative to 0°. Squares: Measured orientation. Line: Linear fit to the data.

Fig. 10.
Fig. 10.

(1.03 MB) A time-sequence of human fingertip images (1024 depth profiles spanning 3 mm in width, 2.65 seconds). Intensity (upper) images of the same imaging plane. Blood flow pulsatility is visible in the phase variance images (lower).

Fig. 11.
Fig. 11.

(2.30 MB) A volume scan of a fingertip. Intensity (upper left), phase retardation (lower left), phase variance (upper right), and bi-directional flow (lower right). The volume is composed of 64 frames covering a length of 4 mm, where individual image frames are composed of 1024 depth profiles covering a width of 4 mm, and was acquired in 3.54 seconds.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λ j = g ( sin θ i + sin ( sin 1 ( λ c d sin θ i ) + tan 1 ( w · j x c F ) ) ) ,
A p ( z m ) ( N 2 p ( s 2 p ) N 2 p ( z m ) ) × ( N 2 p + 1 ( s 2 p + 1 ) N 2 p + 1 ( z m ) ) .
cos ( θ 2 p ( z m ) ) = ( A p ( z m ) × N 2 p ( s 2 p ) ) · ( A p ( z m ) × N 2 p ( z m ) ) A p ( z m ) × N 2 p ( s 2 p ) A p ( z m ) × N 2 p ( z m ) .
σ Δ ϕ = 2 σ ϕ 2 = ( SNR ) 1 2 .
σ Δ x = 4 π 3 ( 1 exp ( 2 ( Δ x d ) 2 ) ) .
Δ θ = 2 SNR .

Metrics