Abstract

Novel spun fibers with intrinsic asymmetric stress and millimeter spin periods are characterized both experimentally and theoretically. Based on the optical spectra of imprinted Bragg gratings, a new method is proposed to precisely measure their spin periods with a 0.1-mm spatial resolution. Properties of polarization-mode dispersion (PMD) and evolutions of polarization in these spun fibers are investigated. The intrinsic birefringence of spun fibers is then obtained with respect to the measured and simulated fiber PMD. Potential applications particularly in fiber sensing are discussed. It is shown that for these different applications, the requirements of fiber parameters are distinct.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. N. Payne, A. J. Barlow, and J. J. Ramskov-Hansen, �??Development of low- and high- birefringence optical fibers,�?? IEEE J. Quantum Electron. 18, 477-486 (1982).
    [CrossRef]
  2. J. R. Qian, Q. Guo, and L. Li, �??Spun linear birefringence fibres and their sensing mechanism in current sensors with temperature compensation,�?? IEE Proc-Optoelectron. 141, 373-380 (1994).
    [CrossRef]
  3. D. A. Nolan, X. Chen, and M. -J. Li, �??Fibers with low polarization-mode dispersion,�?? J. Lightwave Technol. 22, 1066-1077 (2004).
    [CrossRef]
  4. A. Pizzinat, L. Palmieri, B. S. Marks, et al., �??Analytical treatment of randomly birefringent periodically spun fibers,�?? J. Lightwave Technol. 21, 3355-3363 (2003).
    [CrossRef]
  5. S. M. Pietralunga, M. Ferrario, P. Martelli, et al., �??Direct observation of local birefringence and axis rotation in spun fiber with centimetric resolution,�?? IEEE Photon. Technol. Lett. 16, 212-214 (2004).
    [CrossRef]
  6. A. Galtarossa, L. Palmieri, and D. Sarchi, �??Measure of spin period in randomly birefringent low-PMD fibers,�?? IEEE Photon. Technol. Lett. 16, 1131-1133 (2004).
    [CrossRef]
  7. Y. Wang, C. -Q. Xu, and V. Izraelian, �??Characteristics of fiber Bragg gratings in spun fibers,�?? Proc. SPIE 5577, 262-272 (2004).
    [CrossRef]
  8. J. Sakai and T. Kimura, �??Birefringence and polarization characteristics of single-mode optical fibers under elastic deformations,�?? IEEE J. of Quantum Electron. 17, 1041-1051 (1981).
    [CrossRef]
  9. B. L. Heffner, �??Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,�?? IEEE Photon. Technol. Lett. 4, 1066-1069 (1992).
    [CrossRef]
  10. R. C. Jones, �??A new calculus for the treatment of optical systems. IV. Experimental determination of the matrix,�?? J. Opt. Soc. Am. 37, 110-112 (1947).
    [CrossRef]
  11. Y. Wang, C. -Q. Xu, and V. Izraelian, �??Bragg gratings in spun fibers,�?? IEEE Photon. Technol. Lett. (to be published).
  12. A. Othonos, K. Halli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston, 1999).

IEE Proc-Optoelectron. (1)

J. R. Qian, Q. Guo, and L. Li, �??Spun linear birefringence fibres and their sensing mechanism in current sensors with temperature compensation,�?? IEE Proc-Optoelectron. 141, 373-380 (1994).
[CrossRef]

IEEE J. of Quantum Electron. (1)

J. Sakai and T. Kimura, �??Birefringence and polarization characteristics of single-mode optical fibers under elastic deformations,�?? IEEE J. of Quantum Electron. 17, 1041-1051 (1981).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. N. Payne, A. J. Barlow, and J. J. Ramskov-Hansen, �??Development of low- and high- birefringence optical fibers,�?? IEEE J. Quantum Electron. 18, 477-486 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

Y. Wang, C. -Q. Xu, and V. Izraelian, �??Bragg gratings in spun fibers,�?? IEEE Photon. Technol. Lett. (to be published).

B. L. Heffner, �??Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,�?? IEEE Photon. Technol. Lett. 4, 1066-1069 (1992).
[CrossRef]

S. M. Pietralunga, M. Ferrario, P. Martelli, et al., �??Direct observation of local birefringence and axis rotation in spun fiber with centimetric resolution,�?? IEEE Photon. Technol. Lett. 16, 212-214 (2004).
[CrossRef]

A. Galtarossa, L. Palmieri, and D. Sarchi, �??Measure of spin period in randomly birefringent low-PMD fibers,�?? IEEE Photon. Technol. Lett. 16, 1131-1133 (2004).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. (1)

Proc. SPIE (1)

Y. Wang, C. -Q. Xu, and V. Izraelian, �??Characteristics of fiber Bragg gratings in spun fibers,�?? Proc. SPIE 5577, 262-272 (2004).
[CrossRef]

Other (1)

A. Othonos, K. Halli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Schematic stress distribution in cross section of unspun fiber. (b) Evolution of intrinsic stress in a spun fiber.

Fig. 2.
Fig. 2.

Microscopical images of spun fiber # 3 focused on (a) top surface of cladding, (b) fiber core, (c) bottom. (d)–(e) Magnified images around points A1 and A2 in (c).

Fig. 3.
Fig. 3.

(a) DGD versus fiber length for spun fiber #2. (b) PMD reduction factor versus spin period.

Fig. 4.
Fig. 4.

(a) Fiber PMD versus fiber length and (b) unit-length fiber PMD versus wavelength for different birefringence and spin periods. (I) ΔnL =0.5×10-4, Ps =2.0 mm, (II) ΔnL =0.5×10-4, Ps =4.0 mm, (III) ΔnL =1.0×10-4, Ps =2.0 mm, (IV) ΔnL =1.0×10-4, Ps =4.0 mm.

Fig. 5.
Fig. 5.

Unit-length fiber PMD versus birefringence and spin period on (a) linear and (b) logarithmic scales.

Fig. 6.
Fig. 6.

(a) F as a function of linear birefringence. (b) Comparison between simulated (solid line) and measured (squares) results.

Fig. 7.
Fig. 7.

Evolutions of SOP in spun fibers with different birefringence, spin periods and input SOP. (a) ΔnL =0.5×10-4, Ps =2.0 mm, 0° linearly polarized input; (b) ΔnL =0.5×10-4, Ps =2.0 mm, 45° linearly polarized input; (c) ΔnL =0.5×10-4, Ps =2.0 mm, right-circularly polarized input; (d) ΔnL =0.5×10-4, Ps =4.0 mm, 0° linearly polarized input; (e) ΔnL =1.0×10-4, Ps =2.0 mm, 0° linearly polarized input; (f) ΔnL =1.0×10-4, Ps =4.0 mm, 0° linearly polarized input.

Fig. 8.
Fig. 8.

Polarization conversion length versus linear birefringence and spin period.

Fig. 9.
Fig. 9.

(a) Measured and (b) simulated FBG spectra for Fiber #2

Fig. 10.
Fig. 10.

(a) Wavelength interval of FBG side peaks versus spin period. (b) Amplitudes of side peaks versus fiber birefringence for spun fiber #2.

Tables (1)

Tables Icon

Table 1. Spin periods and unit-length fiber PMD.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d dz [ E x E y ] = j [ β 0 + 0.5 Δ β L cos ( 2 α z ) 0.5 Δ β L sin ( 2 α z ) 0.5 Δ β L sin ( 2 α z ) β 0 0.5 Δ β L cos ( 2 α z ) ] [ E x E y ]
[ E x E y ] = [ cos ( α z ) sin ( α z ) sin ( α z ) cos ( α z ) ] [ E ξ E ζ ]
d dz [ E ξ E ζ ] = j [ β 0 + 0.5 Δ β L α α β 0 0.5 Δ β L ] [ E ξ E ζ ] .
[ E x ( z ) E y ( z ) ] = [ cos ( α z ) sin ( α z ) sin ( α z ) cos ( α z ) ] [ cos ( ρ z ) j Δ β L 2 ρ sin ( ρ z ) α ρ sin ( ρ z ) α ρ sin ( ρ z ) cos ( ρ z ) + j Δ β L 2 ρ sin ( ρ z ) ]
× [ E x ( 0 ) E y ( 0 ) ] exp ( j β 0 z )
T = [ k 1 k 4 k 2 k 4 1 ]
k 1 = E x 1 ( L ) E y 1 ( L ) , k 2 = E x 2 ( L ) E y 2 ( L ) , k 3 = E x 3 ( L ) E y 3 ( L ) , k 4 = k 3 k 2 k 1 k 3 .
Δ τ = Arg ( ρ 1 ρ 2 ) Δ ω
F ( Δ n L ) = i = 1 4 [ Δ τ ( Δ n L , P s , i ) Δ τ ˜ ( P s , i ) ] 2

Metrics