Abstract

This work presents a new sequential UV-writing procedure for fabricating long fiber Bragg grating (FBG) devices. To real-time accurately align the position of every exposed FBG section prior to UV exposure, a single-period reference fiber grating with strong refractive index modulation is probed by applying an interferometric side-diffraction method to measure the grating phase as the position reference. In this way the overlapped FBG sections can be connected section-by-section without obvious phase errors, even when the written index-modulation is weak.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Komukai, K. Tamura, and M. Nakazawa, �??An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering,�?? IEEE Photon. Technol. Lett. 9, 934�??936 (1997).
    [CrossRef]
  2. J. T. Kringlebotn, J. L. Archambaut, L. Reekie, and D. N. Payne, �??Er3+:Yb3+-codoped fiber distributed-feedback laser,�?? Opt. Lett. 19, 2101-2103 (1994).
    [CrossRef] [PubMed]
  3. Naum K. Berger, Boris Levit, Shimie Atkins, and Baruch Fischer, �??Repetition-rate multiplication of optical pulses using uniform fiber Bragg gratings,�?? Opt. Commun. 221, 331-335 (2003).
    [CrossRef]
  4. M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas and S. Barcelos, �??Moving fiber/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,�?? Elect. Lett. 31, 1488-1490 (1995).
    [CrossRef]
  5. I. Petermann, B. Sahlgren, S. Helmfrid, A. T. Friberg, and P.-Y. Fonjallaz, �??Fabrication of advanced fiber Bragg gratings by use of sequential writing with a continuous-wave ultraviolet laser source,�?? Appl. Opt. 41, 1051-1056 (2002).
    [CrossRef] [PubMed]
  6. F. El-Diasty, A. Heaney, and T. Erdogan, �??Analysis of fiber Bragg gratings by a side-diffraction interference technique,�?? Appl. Opt. 40, 890-896 (2001).
    [CrossRef]
  7. K.-P. Chuang, I.�??L. Wu and Yinchieh Lai, �??Interferometric side-diffraction position monitoring technique for writing long fiber Bragg gratings,�?? CLEO/IQEC, CThM6 (2004).
  8. Mattias �?slund, John Canning, Leon Poladian, and C. Martijn de Sterke, �??Novel characterization technique with 0.5 ppm spatial accuracy of fringe period in Bragg gratings,�?? Opt. Express 11, 838-842 (2003).
    [CrossRef] [PubMed]
  9. K.-P. Chuang, Y. Lai, and L.-G. Sheu, �??Pure apodized phase-shifted fiber Bragg gratings fabricated by a two-beam interferometer with polarization control,�?? IEEE Photon. Technol. Lett. 16, 834-836 (2004).
    [CrossRef]
  10. B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, �??Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,�?? IEEE Photon. Technol. Lett. 12, 1349-1351 (2000).
    [CrossRef]

Appl. Opt.

CLEO/IQEC

K.-P. Chuang, I.�??L. Wu and Yinchieh Lai, �??Interferometric side-diffraction position monitoring technique for writing long fiber Bragg gratings,�?? CLEO/IQEC, CThM6 (2004).

Elect. Lett.

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas and S. Barcelos, �??Moving fiber/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,�?? Elect. Lett. 31, 1488-1490 (1995).
[CrossRef]

IEEE Photon. Technol. Lett.

K.-P. Chuang, Y. Lai, and L.-G. Sheu, �??Pure apodized phase-shifted fiber Bragg gratings fabricated by a two-beam interferometer with polarization control,�?? IEEE Photon. Technol. Lett. 16, 834-836 (2004).
[CrossRef]

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, �??Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,�?? IEEE Photon. Technol. Lett. 12, 1349-1351 (2000).
[CrossRef]

T. Komukai, K. Tamura, and M. Nakazawa, �??An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering,�?? IEEE Photon. Technol. Lett. 9, 934�??936 (1997).
[CrossRef]

Opt. Commun.

Naum K. Berger, Boris Levit, Shimie Atkins, and Baruch Fischer, �??Repetition-rate multiplication of optical pulses using uniform fiber Bragg gratings,�?? Opt. Commun. 221, 331-335 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Real-time side-diffraction position monitoring setup by probing the just-exposed section. SL: spherical lens; BC: beam combiner; PBS: polarization beam splitter; HWP: half wave plate. (b) Typical interference pattern captured by CCD, the pattern after procedure (filtering+taking-real-part) and the calculated phase distribution.

Fig. 2.
Fig. 2.

Refractive index profile and Bragg wavelength of a uniform fiber grating.

Fig. 3.
Fig. 3.

(a) Real-time side-diffraction position monitoring setup by probing the reference grating. (b) Flow chart of the algorithm.

Fig. 4.
Fig. 4.

(a) Reflection and transmission spectra of a 0.07-nm Gaussian apodized 70-mm long FBG. (b) Reflection and transmission spectra of a 40-mm long, π-phase-shift Gaussian apodized FBG.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I int = I A + I B + 2 I A I B · cos [ k x · 2 sin ( θ 2 2 ) + δ ]
δ = δ grating + δ path difference
n ( x ) = n 0 + Δ n · cos ( 2 π x Λ + ϕ ( x ) )

Metrics