Abstract

This work presents a new sequential UV-writing procedure for fabricating long fiber Bragg grating (FBG) devices. To real-time accurately align the position of every exposed FBG section prior to UV exposure, a single-period reference fiber grating with strong refractive index modulation is probed by applying an interferometric side-diffraction method to measure the grating phase as the position reference. In this way the overlapped FBG sections can be connected section-by-section without obvious phase errors, even when the written index-modulation is weak.

© 2005 Optical Society of America

Full Article  |  PDF Article
Related Articles
Fabrication of multipassband moiré resonators in fibers by the dual-phase-mask exposure method

L. A. Everall, K. Sugden, J. A. R. Williams, I. Bennion, X. Liu, J. S. Aitchison, S. Thoms, and R. M. De La Rue
Opt. Lett. 22(19) 1473-1475 (1997)

Analysis of phase-shifted fiber Bragg gratings written with phase plates

Christophe Martinez and Pierre Ferdinand
Appl. Opt. 38(15) 3223-3228 (1999)

Complex fiber grating structures fabricated by sequential writing with polarization control

Kai-Ping Chuang, Yinchieh Lai, and Lih-Gen Sheu
Opt. Lett. 29(4) 340-342 (2004)

References

  • View by:
  • |
  • |
  • |

  1. T. Komukai, K. Tamura, and M. Nakazawa, “An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering,” IEEE Photon. Technol. Lett. 9, 934–936 (1997).
    [Crossref]
  2. J. T. Kringlebotn, J. L. Archambaut, L. Reekie, and D. N. Payne, “Er3+:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett. 19, 2101–2103 (1994).
    [Crossref] [PubMed]
  3. Naum K. Berger, Boris Levit, Shimie Atkins, and Baruch Fischer, “Repetition-rate multiplication of optical pulses using uniform fiber Bragg gratings,” Opt. Commun. 221, 331–335 (2003).
    [Crossref]
  4. M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fiber/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Elect. Lett. 31, 1488–1490 (1995).
    [Crossref]
  5. I. Petermann, B. Sahlgren, S. Helmfrid, A. T. Friberg, and P.-Y. Fonjallaz, “Fabrication of advanced fiber Bragg gratings by use of sequential writing with a continuous-wave ultraviolet laser source,” Appl. Opt. 41, 1051–1056 (2002).
    [Crossref] [PubMed]
  6. F. El-Diasty, A. Heaney, and T. Erdogan, “Analysis of fiber Bragg gratings by a side-diffraction interference technique,” Appl. Opt. 40, 890–896 (2001).
    [Crossref]
  7. K.-P. Chuang, I.-L. Wu, and Yinchieh Lai, “Interferometric side-diffraction position monitoring technique for writing long fiber Bragg gratings,” CLEO/IQEC, CThM6 (2004).
  8. Mattias Åslund, John Canning, Leon Poladian, and C. Martijn de Sterke, “Novel characterization technique with 0.5 ppm spatial accuracy of fringe period in Bragg gratings,” Opt. Express 11, 838–842 (2003).
    [Crossref] [PubMed]
  9. K.-P. Chuang, Y. Lai, and L.-G. Sheu, “Pure apodized phase-shifted fiber Bragg gratings fabricated by a two-beam interferometer with polarization control,” IEEE Photon. Technol. Lett. 16, 834–836 (2004).
    [Crossref]
  10. B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photon. Technol. Lett. 12, 1349–1351 (2000).
    [Crossref]

2004 (1)

K.-P. Chuang, Y. Lai, and L.-G. Sheu, “Pure apodized phase-shifted fiber Bragg gratings fabricated by a two-beam interferometer with polarization control,” IEEE Photon. Technol. Lett. 16, 834–836 (2004).
[Crossref]

2003 (2)

Naum K. Berger, Boris Levit, Shimie Atkins, and Baruch Fischer, “Repetition-rate multiplication of optical pulses using uniform fiber Bragg gratings,” Opt. Commun. 221, 331–335 (2003).
[Crossref]

Mattias Åslund, John Canning, Leon Poladian, and C. Martijn de Sterke, “Novel characterization technique with 0.5 ppm spatial accuracy of fringe period in Bragg gratings,” Opt. Express 11, 838–842 (2003).
[Crossref] [PubMed]

2002 (1)

2001 (1)

2000 (1)

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photon. Technol. Lett. 12, 1349–1351 (2000).
[Crossref]

1997 (1)

T. Komukai, K. Tamura, and M. Nakazawa, “An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering,” IEEE Photon. Technol. Lett. 9, 934–936 (1997).
[Crossref]

1995 (1)

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fiber/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Elect. Lett. 31, 1488–1490 (1995).
[Crossref]

1994 (1)

Archambaut, J. L.

Åslund, Mattias

Atkins, Shimie

Naum K. Berger, Boris Levit, Shimie Atkins, and Baruch Fischer, “Repetition-rate multiplication of optical pulses using uniform fiber Bragg gratings,” Opt. Commun. 221, 331–335 (2003).
[Crossref]

Barcelos, S.

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fiber/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Elect. Lett. 31, 1488–1490 (1995).
[Crossref]

Berger, Naum K.

Naum K. Berger, Boris Levit, Shimie Atkins, and Baruch Fischer, “Repetition-rate multiplication of optical pulses using uniform fiber Bragg gratings,” Opt. Commun. 221, 331–335 (2003).
[Crossref]

Canning, John

Chuang, K.-P.

K.-P. Chuang, Y. Lai, and L.-G. Sheu, “Pure apodized phase-shifted fiber Bragg gratings fabricated by a two-beam interferometer with polarization control,” IEEE Photon. Technol. Lett. 16, 834–836 (2004).
[Crossref]

K.-P. Chuang, I.-L. Wu, and Yinchieh Lai, “Interferometric side-diffraction position monitoring technique for writing long fiber Bragg gratings,” CLEO/IQEC, CThM6 (2004).

Cole, M. J.

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fiber/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Elect. Lett. 31, 1488–1490 (1995).
[Crossref]

Dong, X.-Y.

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photon. Technol. Lett. 12, 1349–1351 (2000).
[Crossref]

El-Diasty, F.

Erdogan, T.

Fischer, Baruch

Naum K. Berger, Boris Levit, Shimie Atkins, and Baruch Fischer, “Repetition-rate multiplication of optical pulses using uniform fiber Bragg gratings,” Opt. Commun. 221, 331–335 (2003).
[Crossref]

Fonjallaz, P.-Y.

Friberg, A. T.

Guan, B.-O.

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photon. Technol. Lett. 12, 1349–1351 (2000).
[Crossref]

Heaney, A.

Helmfrid, S.

Komukai, T.

T. Komukai, K. Tamura, and M. Nakazawa, “An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering,” IEEE Photon. Technol. Lett. 9, 934–936 (1997).
[Crossref]

Kringlebotn, J. T.

Lai, Y.

K.-P. Chuang, Y. Lai, and L.-G. Sheu, “Pure apodized phase-shifted fiber Bragg gratings fabricated by a two-beam interferometer with polarization control,” IEEE Photon. Technol. Lett. 16, 834–836 (2004).
[Crossref]

Lai, Yinchieh

K.-P. Chuang, I.-L. Wu, and Yinchieh Lai, “Interferometric side-diffraction position monitoring technique for writing long fiber Bragg gratings,” CLEO/IQEC, CThM6 (2004).

Laming, R. I.

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fiber/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Elect. Lett. 31, 1488–1490 (1995).
[Crossref]

Levit, Boris

Naum K. Berger, Boris Levit, Shimie Atkins, and Baruch Fischer, “Repetition-rate multiplication of optical pulses using uniform fiber Bragg gratings,” Opt. Commun. 221, 331–335 (2003).
[Crossref]

Loh, W. H.

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fiber/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Elect. Lett. 31, 1488–1490 (1995).
[Crossref]

Martijn de Sterke, C.

Nakazawa, M.

T. Komukai, K. Tamura, and M. Nakazawa, “An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering,” IEEE Photon. Technol. Lett. 9, 934–936 (1997).
[Crossref]

Payne, D. N.

Petermann, I.

Poladian, Leon

Reekie, L.

Sahlgren, B.

Sheu, L.-G.

K.-P. Chuang, Y. Lai, and L.-G. Sheu, “Pure apodized phase-shifted fiber Bragg gratings fabricated by a two-beam interferometer with polarization control,” IEEE Photon. Technol. Lett. 16, 834–836 (2004).
[Crossref]

Tam, H.-Y.

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photon. Technol. Lett. 12, 1349–1351 (2000).
[Crossref]

Tamura, K.

T. Komukai, K. Tamura, and M. Nakazawa, “An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering,” IEEE Photon. Technol. Lett. 9, 934–936 (1997).
[Crossref]

Tao, X.-M.

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photon. Technol. Lett. 12, 1349–1351 (2000).
[Crossref]

Wu, I.-L.

K.-P. Chuang, I.-L. Wu, and Yinchieh Lai, “Interferometric side-diffraction position monitoring technique for writing long fiber Bragg gratings,” CLEO/IQEC, CThM6 (2004).

Zervas, M. N.

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fiber/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Elect. Lett. 31, 1488–1490 (1995).
[Crossref]

Appl. Opt. (2)

Elect. Lett. (1)

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fiber/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Elect. Lett. 31, 1488–1490 (1995).
[Crossref]

IEEE Photon. Technol. Lett. (3)

T. Komukai, K. Tamura, and M. Nakazawa, “An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering,” IEEE Photon. Technol. Lett. 9, 934–936 (1997).
[Crossref]

K.-P. Chuang, Y. Lai, and L.-G. Sheu, “Pure apodized phase-shifted fiber Bragg gratings fabricated by a two-beam interferometer with polarization control,” IEEE Photon. Technol. Lett. 16, 834–836 (2004).
[Crossref]

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,” IEEE Photon. Technol. Lett. 12, 1349–1351 (2000).
[Crossref]

Opt. Commun. (1)

Naum K. Berger, Boris Levit, Shimie Atkins, and Baruch Fischer, “Repetition-rate multiplication of optical pulses using uniform fiber Bragg gratings,” Opt. Commun. 221, 331–335 (2003).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Other (1)

K.-P. Chuang, I.-L. Wu, and Yinchieh Lai, “Interferometric side-diffraction position monitoring technique for writing long fiber Bragg gratings,” CLEO/IQEC, CThM6 (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Real-time side-diffraction position monitoring setup by probing the just-exposed section. SL: spherical lens; BC: beam combiner; PBS: polarization beam splitter; HWP: half wave plate. (b) Typical interference pattern captured by CCD, the pattern after procedure (filtering+taking-real-part) and the calculated phase distribution.

Fig. 2.
Fig. 2.

Refractive index profile and Bragg wavelength of a uniform fiber grating.

Fig. 3.
Fig. 3.

(a) Real-time side-diffraction position monitoring setup by probing the reference grating. (b) Flow chart of the algorithm.

Fig. 4.
Fig. 4.

(a) Reflection and transmission spectra of a 0.07-nm Gaussian apodized 70-mm long FBG. (b) Reflection and transmission spectra of a 40-mm long, π-phase-shift Gaussian apodized FBG.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I int = I A + I B + 2 I A I B · cos [ k x · 2 sin ( θ 2 2 ) + δ ]
δ = δ grating + δ path difference
n ( x ) = n 0 + Δ n · cos ( 2 π x Λ + ϕ ( x ) )

Metrics