Abstract

Nano-carbon as lighting source is demonstrated in this paper. The characterized nano-radiation from nano-carbon, excited by different lasers in vacuum, is observed when laser intensity is over a threshold. With lower excitation threshold and smaller white light source, nano-carbon is more applicable to be as lighting system than the others in scientific experiments. White light emission of nano-carbon induced by more practicable electromagnetic excitation (microwave) is also demonstrated, which is caused by the faradic heating of the metal substrates, with molecular spectra and better color rendering. Lighting systems comprised of nano-carbon may become one of the considerable directions in optics.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. T. Canham, �??Sillicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,�?? Appl. Phys. Lett. 57, 1046-1048 (1990).
    [CrossRef]
  2. R. P. Chin, Y. R. Shen, and V. Petrova- Koch, �??Photoluminescence from porous silicon by infrared multiphoton excitation,�?? Science 270, 776-778 (1995).
    [CrossRef]
  3. S. Kalem and O. Yavuzcetin, �??Possibility of fabricating light-emitting porous silicon from gas phase etchants,�?? Opt. Express 6, 7-11 (2000), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-1-7.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-1-7.</a>
    [CrossRef] [PubMed]
  4. T. Karacali, B. Cakmak, and H. Efeoglu, �??Aging of porous silicon and the origin of blue shift,�?? Opt. Express 11, 1237-1242 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1237.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1237.</a>
    [CrossRef] [PubMed]
  5. F. Hide, P. Kozodoy, S. P. DenBaars, and A. J. Heeger, �??White light from InGaN/conjugated polymer hybrid light-emitting diodes,�?? Appl. Phys. Lett. 70, 2664-2666 (1997).
    [CrossRef]
  6. B. Cakmak, �??Fabrication and characterization of dry and wet etched InGaAs/InGaAsP/InP long wavelength semiconductor lasers,�?? Opt. Express 10, 530-535 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-13-530.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-13-530.</a>
    [PubMed]
  7. S. M. Wang, L. G. Hu, Z. D. Lu, D. M. Zhao, T. Z. Peng, Y. W. Zeng, D. R. Yang, Y. Zhao, J. Sha, and J. J. Niu, �??White and bright radiation from nanostructured carbon,�?? Chinese J. Optoelectronics Laser 14(2), 215-220 (2003).
  8. S. M. Wang, Y. H. Shen, J. X. Xu, L. G. Hu, J. Zhu, D. R. Yang, H. Zhang, Y. W. Zeng, and J. Q. Yao, �??Deep-ultraviolet emission from an InGaAs semiconductor laser,�?? Appl. Phys. Lett. 84, 3007-3009 (2004).
    [CrossRef]
  9. P. Heszler, P. Mogyorósi and J. O. Carlsson, �??Phosphorescence from tungstenclusters during laser-assisted chemical-vapor deposition of tungsten,�?? J. Appl. Phys. 78, 5277-5282 (1995).
    [CrossRef]
  10. P. Heszler, L. Landström, M. Lindstam, and J. O. Carlsson., �??Light emission from tungsten nanoparticles during laser-assisted chemical vapor deposition of tungsten,�?? J. Appl. Phys. 89, 3967-3970 (2001).
    [CrossRef]
  11. A. V. Melechko, V. I. Merkulov, T. E. McKnight, M. A. Guillorn, K. L. Klein, D. H. Lowndes, and M. L. Simpson, �??Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly,�?? J. Appl. Phys. 97, 041301 (2005).
    [CrossRef]
  12. A. N. Obraztsov, A. P.Volkov, Al. A. Zakhidov, D. A. Lyashenko, Yu. V. Petrushenko, and O. P. Satanovskaya, �??Field emission characteristics of nanostructured thin film carbon materials,�?? Appl. Surf. Sci. 215, 214-221 (2003).
    [CrossRef]
  13. M. Vollmer, K. P. Möllmann, and D. Karstädt, �??Microwave oven experiments with metals and light sources,�?? Phys. Educ. 39, 500-508 (2004).
    [CrossRef]
  14. R. Coisson and E. Rancan, �??Quantitative use of a Crookes radiometer,�?? Phys. Educ. 14, 58-59 (1979).
    [CrossRef]
  15. W. de Fonvielle, �??The radiometer in France,�?? Nature 14, 296-297 (1876).
    [CrossRef]
  16. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Willey, New York, 1983).
  17. H. Chang and T. T. Charalampopoulos, �??Determination of the wavelength dependence of refractive indices of flame soot,�?? Proc. R. Soc. Lond. A 430, 577-591 (1990).
    [CrossRef]
  18. W. Adrian, �??Spectral sensitivity of the pupillary system,�?? Clin. Exp. Optom. 86, 235-238 (2003).
    [CrossRef] [PubMed]
  19. J. G. Phillips and S. P. Davis, I. The Swan System of the C2 Molecule. II. The Spectrum of the HgH Molecule (University of California Press, Berkeley and Los Angeles, 1968).
    [PubMed]
  20. E. A. Rohlfing, �??Optical emission studies of atomic, molecular, and particulate carbon produced from a laser vaporization cluster source,�?? J. Chem. Phys. 89, 6103-6112 (1988).
    [CrossRef]

Appl. Phys. Lett.

L. T. Canham, �??Sillicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,�?? Appl. Phys. Lett. 57, 1046-1048 (1990).
[CrossRef]

S. M. Wang, Y. H. Shen, J. X. Xu, L. G. Hu, J. Zhu, D. R. Yang, H. Zhang, Y. W. Zeng, and J. Q. Yao, �??Deep-ultraviolet emission from an InGaAs semiconductor laser,�?? Appl. Phys. Lett. 84, 3007-3009 (2004).
[CrossRef]

F. Hide, P. Kozodoy, S. P. DenBaars, and A. J. Heeger, �??White light from InGaN/conjugated polymer hybrid light-emitting diodes,�?? Appl. Phys. Lett. 70, 2664-2666 (1997).
[CrossRef]

Appl. Surf. Sci.

A. N. Obraztsov, A. P.Volkov, Al. A. Zakhidov, D. A. Lyashenko, Yu. V. Petrushenko, and O. P. Satanovskaya, �??Field emission characteristics of nanostructured thin film carbon materials,�?? Appl. Surf. Sci. 215, 214-221 (2003).
[CrossRef]

Chinese J. Optoelectronics Laser

S. M. Wang, L. G. Hu, Z. D. Lu, D. M. Zhao, T. Z. Peng, Y. W. Zeng, D. R. Yang, Y. Zhao, J. Sha, and J. J. Niu, �??White and bright radiation from nanostructured carbon,�?? Chinese J. Optoelectronics Laser 14(2), 215-220 (2003).

Clin. Exp. Optom.

W. Adrian, �??Spectral sensitivity of the pupillary system,�?? Clin. Exp. Optom. 86, 235-238 (2003).
[CrossRef] [PubMed]

J. Appl. Phys.

P. Heszler, P. Mogyorósi and J. O. Carlsson, �??Phosphorescence from tungstenclusters during laser-assisted chemical-vapor deposition of tungsten,�?? J. Appl. Phys. 78, 5277-5282 (1995).
[CrossRef]

P. Heszler, L. Landström, M. Lindstam, and J. O. Carlsson., �??Light emission from tungsten nanoparticles during laser-assisted chemical vapor deposition of tungsten,�?? J. Appl. Phys. 89, 3967-3970 (2001).
[CrossRef]

A. V. Melechko, V. I. Merkulov, T. E. McKnight, M. A. Guillorn, K. L. Klein, D. H. Lowndes, and M. L. Simpson, �??Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly,�?? J. Appl. Phys. 97, 041301 (2005).
[CrossRef]

J. Chem. Phys.

E. A. Rohlfing, �??Optical emission studies of atomic, molecular, and particulate carbon produced from a laser vaporization cluster source,�?? J. Chem. Phys. 89, 6103-6112 (1988).
[CrossRef]

Nature

W. de Fonvielle, �??The radiometer in France,�?? Nature 14, 296-297 (1876).
[CrossRef]

Opt. Express

Phys. Educ.

M. Vollmer, K. P. Möllmann, and D. Karstädt, �??Microwave oven experiments with metals and light sources,�?? Phys. Educ. 39, 500-508 (2004).
[CrossRef]

R. Coisson and E. Rancan, �??Quantitative use of a Crookes radiometer,�?? Phys. Educ. 14, 58-59 (1979).
[CrossRef]

Proc. R. Soc. Lond. A

H. Chang and T. T. Charalampopoulos, �??Determination of the wavelength dependence of refractive indices of flame soot,�?? Proc. R. Soc. Lond. A 430, 577-591 (1990).
[CrossRef]

Science

R. P. Chin, Y. R. Shen, and V. Petrova- Koch, �??Photoluminescence from porous silicon by infrared multiphoton excitation,�?? Science 270, 776-778 (1995).
[CrossRef]

Other

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Willey, New York, 1983).

J. G. Phillips and S. P. Davis, I. The Swan System of the C2 Molecule. II. The Spectrum of the HgH Molecule (University of California Press, Berkeley and Los Angeles, 1968).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Demonstration of the laser-induced characterized nano-radiation from nano-carbon covering the vanes of the Crookes radiometer. (a) The magnification of the pane in Fig. 1(b). (b) One vane of the radiometer is illuminated on the blackened side by a focused red (λ=655 nm) LD beam. (c) Spectra of the white light emission induced by two different LDs with 806-nm wavelength (250-mW power, red line) and 655-nm wavelength (35-mW power, green line). (d) TEM picture of the nano-carbon particles.

Fig. 2.
Fig. 2.

(a) Spectra of laser-induced radiation from carbon nanoparticles (red line) and theoretical simulation of blackbody radiation (blue line), radiation from a carbon nano-particle (green line) at temperature 3800 K. (b) Similar phenomenon is still observed in the modified radiometer by us.

Fig. 3.
Fig. 3.

Features of the characterized nano-radiation. (a) Comparison of spectra between the nano-radiation of nano-carbon (red line) and normal LED (green line). (b) Oscillograph trace of emission delay and (c) emission decay in the time resolved experiments (recorded by a photomultiplier and HAMEG 30 MHz Analog/Digital Scope HM 305).

Fig. 4.
Fig. 4.

Demonstration of the microwave-induced white light emission. (a) Photograph of this emission from the radiometer. (b) Photograph of the sun under the same exposure condition for comparison. (c) Spectrum of the microwave-induced emission. (d) Spectrum of the sun light.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Φ λ ( r , T ) = 4 π r 2 Q abs ( r , λ ) P λ ( T ) ,
Q abs ( r , λ ) = 8 π r λ Im [ m 2 1 m 2 + 2 ] .

Metrics