Abstract

Early work suggested that very large refractive index contrasts would be needed to create photonic bandgaps in two or three dimensionally periodic photonic crystals. It was then shown that in two-dimensionally periodic structures (such as photonic crystal fibres) a non-zero wavevector component in the axial direction permits photonic bandgaps for much smaller index contrasts. Here we experimentally demonstrate a photonic bandgap fibre made from two glasses with a relative index step of only 1%.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D.  Joannopoulos, R. D.  Meade, J. N.  Winn, Photonic Crystals (Princeton University Press, 1995).
  2. P. R.  Villeneuve, M.  Piché, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B 48, 4969–72 (1992).
    [CrossRef]
  3. T. A.  Birks, P. J.  Roberts, P. St. J.  Russell, D. M.  Atkin, T. J.  Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–2 (1995).
    [CrossRef]
  4. R. F.  Cregan, B. J.  Managan, J. C.  Knight, T. A.  Birks, P. St. J.  Russell, P. J.  Roberts, D. C.  Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–9 (1999).
    [CrossRef] [PubMed]
  5. D. C.  Allen et al. in Photonic Crystals and Light Localization in the 21st Century (ed. C. M.  Soukoulis) 305–320 (Kluwer Academic, Dordrecht, 2001).
  6. C. M.  Smith, N.  Venkataraman, M. T.  Gallagher, D.  Muller, J. A.  West, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–9 (2003).
    [CrossRef] [PubMed]
  7. R. T.  Bise, R. S.  Windeler, K. S.  Kranz, C.  Kerbage, B. J.  Eggleton, D. J.  Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication , Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002) 466–8.
  8. T. P.  White, R. C.  McPhedran, C. M.  de Sterke, N. M.  Litchinitser, B. J.  Eggleton, “Resonance and scattering in microstructured optical fibers,” Opt. Lett. 27, 1977–9 (2002).
    [CrossRef]
  9. F.  Luan, A. K.  George, T. D.  Hedley, G. J.  Pearce, D. M.  Bird, J. C.  Knight, P. St. J.  Russell, “All-solid photonic band gap fiber,” Opt. Lett. 29, 2369–71 (2004).
    [CrossRef] [PubMed]
  10. P. St. J.  Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [CrossRef] [PubMed]
  11. N. M.  Litchinitser, A. K.  Abeeluck, C.  Headley, B. J.  Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–4 (2002).
    [CrossRef]
  12. J.  Lægsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A 6, 798–804 (2004).
    [CrossRef]
  13. J.  Riishede, J.  Lægsgaard, J.  Broeng, A.  Bjarklev, “All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm,” J. Opt. A 6, 667–70 (2004).
    [CrossRef]
  14. T. A.  Birks, D. M.  Bird, T. D.  Hedley, J. M.  Pottage, P. St. J.  Russell, “Scaling laws and vector effects in bandgap-guiding fibres,” Opt. Express 12, 69–74 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-69.
    [CrossRef] [PubMed]
  15. P.  Yeh, A.  Yariv, E.  Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201 (1978).
    [CrossRef]
  16. Y.  Fink, D. J.  Ripin, S. H.  Fan, C. P.  Chen, J. D.  Joannopoulos, E. L.  Thomas, “Guiding optical light in air using an all-dielectric structure,” IEEE J. Lightwave Technol. 17, 2039–41 (1999).
    [CrossRef]
  17. F.  Brechet, P.  Leproux, P.  Roy, J.  Marcou, D.  Pagnoux, “Analysis of bandpass filtering behaviour of singlemode depressed-core-index photonic-bandgap fibre,” Electron. Lett. 36, 870–2 (2000).
    [CrossRef]
  18. Corning Corguide, core diameter 50 µm, cladding diameter 125 µm, numerical aperture 0.21.
  19. Corning SMF-28, core diameter 9 µm, cladding diameter 125 µm, index contrast 0.36%, second-mode cutoff wavelength <1260 nm.
  20. J.  Hecht, Understanding Fiber Optics (Prentice Hall, Columbus, 1999).
  21. A. W.  Snyder, J. D.  Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).
  22. R. J.  Black, J.  Lapierre, J.  Bures, “Field evolution in doubly clad lightguides,” IEE Proc. Pt. J 134, 105–110 (1987).
  23. W. A.  Gambling, H.  Matsumura, “Simple characterisation factor for practical single-mode fibres,” Electron. Lett. 13, 691–3 (1977).
    [CrossRef]
  24. W. J.  Wadsworth, N.  Joly, J. C.  Knight, T. A.  Birks, F.  Biancalana, P. St. J.  Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers,” Opt. Express 12, 299–309 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299.
    [CrossRef] [PubMed]
  25. N. A.  Issa, L.  Poladian, “Vector wave expansion method for leaky modes of microstructured fibers,” IEEE J. Lightwave Technol. 21, 1005–12 (2003).
    [CrossRef]
  26. M. E.  Lines, W. A.  Reed, D. J.  Di Giovanni, J. R.  Hamblin, “Explanation of anomalous loss in high delta singlemode fibres,” Electron. Lett. 35, 1009–10 (1999).
    [CrossRef]

2004 (4)

2003 (3)

P. St. J.  Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

N. A.  Issa, L.  Poladian, “Vector wave expansion method for leaky modes of microstructured fibers,” IEEE J. Lightwave Technol. 21, 1005–12 (2003).
[CrossRef]

C. M.  Smith, N.  Venkataraman, M. T.  Gallagher, D.  Muller, J. A.  West, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–9 (2003).
[CrossRef] [PubMed]

2002 (2)

2000 (1)

F.  Brechet, P.  Leproux, P.  Roy, J.  Marcou, D.  Pagnoux, “Analysis of bandpass filtering behaviour of singlemode depressed-core-index photonic-bandgap fibre,” Electron. Lett. 36, 870–2 (2000).
[CrossRef]

1999 (3)

M. E.  Lines, W. A.  Reed, D. J.  Di Giovanni, J. R.  Hamblin, “Explanation of anomalous loss in high delta singlemode fibres,” Electron. Lett. 35, 1009–10 (1999).
[CrossRef]

R. F.  Cregan, B. J.  Managan, J. C.  Knight, T. A.  Birks, P. St. J.  Russell, P. J.  Roberts, D. C.  Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–9 (1999).
[CrossRef] [PubMed]

Y.  Fink, D. J.  Ripin, S. H.  Fan, C. P.  Chen, J. D.  Joannopoulos, E. L.  Thomas, “Guiding optical light in air using an all-dielectric structure,” IEEE J. Lightwave Technol. 17, 2039–41 (1999).
[CrossRef]

1995 (1)

T. A.  Birks, P. J.  Roberts, P. St. J.  Russell, D. M.  Atkin, T. J.  Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–2 (1995).
[CrossRef]

1992 (1)

P. R.  Villeneuve, M.  Piché, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B 48, 4969–72 (1992).
[CrossRef]

1987 (1)

R. J.  Black, J.  Lapierre, J.  Bures, “Field evolution in doubly clad lightguides,” IEE Proc. Pt. J 134, 105–110 (1987).

1978 (1)

1977 (1)

W. A.  Gambling, H.  Matsumura, “Simple characterisation factor for practical single-mode fibres,” Electron. Lett. 13, 691–3 (1977).
[CrossRef]

Abeeluck, A. K.

Allan, D. C.

C. M.  Smith, N.  Venkataraman, M. T.  Gallagher, D.  Muller, J. A.  West, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–9 (2003).
[CrossRef] [PubMed]

Allen, D. C.

R. F.  Cregan, B. J.  Managan, J. C.  Knight, T. A.  Birks, P. St. J.  Russell, P. J.  Roberts, D. C.  Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–9 (1999).
[CrossRef] [PubMed]

D. C.  Allen et al. in Photonic Crystals and Light Localization in the 21st Century (ed. C. M.  Soukoulis) 305–320 (Kluwer Academic, Dordrecht, 2001).

Atkin, D. M.

T. A.  Birks, P. J.  Roberts, P. St. J.  Russell, D. M.  Atkin, T. J.  Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–2 (1995).
[CrossRef]

Biancalana, F.

W. J.  Wadsworth, N.  Joly, J. C.  Knight, T. A.  Birks, F.  Biancalana, P. St. J.  Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers,” Opt. Express 12, 299–309 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299.
[CrossRef] [PubMed]

Bird, D. M.

Birks, T. A.

T. A.  Birks, D. M.  Bird, T. D.  Hedley, J. M.  Pottage, P. St. J.  Russell, “Scaling laws and vector effects in bandgap-guiding fibres,” Opt. Express 12, 69–74 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-69.
[CrossRef] [PubMed]

R. F.  Cregan, B. J.  Managan, J. C.  Knight, T. A.  Birks, P. St. J.  Russell, P. J.  Roberts, D. C.  Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–9 (1999).
[CrossRef] [PubMed]

T. A.  Birks, P. J.  Roberts, P. St. J.  Russell, D. M.  Atkin, T. J.  Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–2 (1995).
[CrossRef]

W. J.  Wadsworth, N.  Joly, J. C.  Knight, T. A.  Birks, F.  Biancalana, P. St. J.  Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers,” Opt. Express 12, 299–309 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299.
[CrossRef] [PubMed]

Bise, R. T.

R. T.  Bise, R. S.  Windeler, K. S.  Kranz, C.  Kerbage, B. J.  Eggleton, D. J.  Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication , Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002) 466–8.

Bjarklev, A.

J.  Riishede, J.  Lægsgaard, J.  Broeng, A.  Bjarklev, “All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm,” J. Opt. A 6, 667–70 (2004).
[CrossRef]

Black, R. J.

R. J.  Black, J.  Lapierre, J.  Bures, “Field evolution in doubly clad lightguides,” IEE Proc. Pt. J 134, 105–110 (1987).

Borrelli, N. F.

C. M.  Smith, N.  Venkataraman, M. T.  Gallagher, D.  Muller, J. A.  West, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–9 (2003).
[CrossRef] [PubMed]

Brechet, F.

F.  Brechet, P.  Leproux, P.  Roy, J.  Marcou, D.  Pagnoux, “Analysis of bandpass filtering behaviour of singlemode depressed-core-index photonic-bandgap fibre,” Electron. Lett. 36, 870–2 (2000).
[CrossRef]

Broeng, J.

J.  Riishede, J.  Lægsgaard, J.  Broeng, A.  Bjarklev, “All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm,” J. Opt. A 6, 667–70 (2004).
[CrossRef]

Bures, J.

R. J.  Black, J.  Lapierre, J.  Bures, “Field evolution in doubly clad lightguides,” IEE Proc. Pt. J 134, 105–110 (1987).

Chen, C. P.

Y.  Fink, D. J.  Ripin, S. H.  Fan, C. P.  Chen, J. D.  Joannopoulos, E. L.  Thomas, “Guiding optical light in air using an all-dielectric structure,” IEEE J. Lightwave Technol. 17, 2039–41 (1999).
[CrossRef]

Cregan, R. F.

R. F.  Cregan, B. J.  Managan, J. C.  Knight, T. A.  Birks, P. St. J.  Russell, P. J.  Roberts, D. C.  Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–9 (1999).
[CrossRef] [PubMed]

de Sterke, C. M.

Di Giovanni, D. J.

M. E.  Lines, W. A.  Reed, D. J.  Di Giovanni, J. R.  Hamblin, “Explanation of anomalous loss in high delta singlemode fibres,” Electron. Lett. 35, 1009–10 (1999).
[CrossRef]

Eggleton, B. J.

N. M.  Litchinitser, A. K.  Abeeluck, C.  Headley, B. J.  Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–4 (2002).
[CrossRef]

T. P.  White, R. C.  McPhedran, C. M.  de Sterke, N. M.  Litchinitser, B. J.  Eggleton, “Resonance and scattering in microstructured optical fibers,” Opt. Lett. 27, 1977–9 (2002).
[CrossRef]

R. T.  Bise, R. S.  Windeler, K. S.  Kranz, C.  Kerbage, B. J.  Eggleton, D. J.  Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication , Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002) 466–8.

Fan, S. H.

Y.  Fink, D. J.  Ripin, S. H.  Fan, C. P.  Chen, J. D.  Joannopoulos, E. L.  Thomas, “Guiding optical light in air using an all-dielectric structure,” IEEE J. Lightwave Technol. 17, 2039–41 (1999).
[CrossRef]

Fink, Y.

Y.  Fink, D. J.  Ripin, S. H.  Fan, C. P.  Chen, J. D.  Joannopoulos, E. L.  Thomas, “Guiding optical light in air using an all-dielectric structure,” IEEE J. Lightwave Technol. 17, 2039–41 (1999).
[CrossRef]

Gallagher, M. T.

C. M.  Smith, N.  Venkataraman, M. T.  Gallagher, D.  Muller, J. A.  West, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–9 (2003).
[CrossRef] [PubMed]

Gambling, W. A.

W. A.  Gambling, H.  Matsumura, “Simple characterisation factor for practical single-mode fibres,” Electron. Lett. 13, 691–3 (1977).
[CrossRef]

George, A. K.

Hamblin, J. R.

M. E.  Lines, W. A.  Reed, D. J.  Di Giovanni, J. R.  Hamblin, “Explanation of anomalous loss in high delta singlemode fibres,” Electron. Lett. 35, 1009–10 (1999).
[CrossRef]

Headley, C.

Hecht, J.

J.  Hecht, Understanding Fiber Optics (Prentice Hall, Columbus, 1999).

Hedley, T. D.

Issa, N. A.

N. A.  Issa, L.  Poladian, “Vector wave expansion method for leaky modes of microstructured fibers,” IEEE J. Lightwave Technol. 21, 1005–12 (2003).
[CrossRef]

Joannopoulos, J. D.

Y.  Fink, D. J.  Ripin, S. H.  Fan, C. P.  Chen, J. D.  Joannopoulos, E. L.  Thomas, “Guiding optical light in air using an all-dielectric structure,” IEEE J. Lightwave Technol. 17, 2039–41 (1999).
[CrossRef]

J. D.  Joannopoulos, R. D.  Meade, J. N.  Winn, Photonic Crystals (Princeton University Press, 1995).

Joly, N.

W. J.  Wadsworth, N.  Joly, J. C.  Knight, T. A.  Birks, F.  Biancalana, P. St. J.  Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers,” Opt. Express 12, 299–309 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299.
[CrossRef] [PubMed]

Kerbage, C.

R. T.  Bise, R. S.  Windeler, K. S.  Kranz, C.  Kerbage, B. J.  Eggleton, D. J.  Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication , Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002) 466–8.

Knight, J. C.

F.  Luan, A. K.  George, T. D.  Hedley, G. J.  Pearce, D. M.  Bird, J. C.  Knight, P. St. J.  Russell, “All-solid photonic band gap fiber,” Opt. Lett. 29, 2369–71 (2004).
[CrossRef] [PubMed]

R. F.  Cregan, B. J.  Managan, J. C.  Knight, T. A.  Birks, P. St. J.  Russell, P. J.  Roberts, D. C.  Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–9 (1999).
[CrossRef] [PubMed]

W. J.  Wadsworth, N.  Joly, J. C.  Knight, T. A.  Birks, F.  Biancalana, P. St. J.  Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers,” Opt. Express 12, 299–309 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299.
[CrossRef] [PubMed]

Koch, K. W.

C. M.  Smith, N.  Venkataraman, M. T.  Gallagher, D.  Muller, J. A.  West, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–9 (2003).
[CrossRef] [PubMed]

Kranz, K. S.

R. T.  Bise, R. S.  Windeler, K. S.  Kranz, C.  Kerbage, B. J.  Eggleton, D. J.  Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication , Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002) 466–8.

Lægsgaard, J.

J.  Lægsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A 6, 798–804 (2004).
[CrossRef]

J.  Riishede, J.  Lægsgaard, J.  Broeng, A.  Bjarklev, “All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm,” J. Opt. A 6, 667–70 (2004).
[CrossRef]

Lapierre, J.

R. J.  Black, J.  Lapierre, J.  Bures, “Field evolution in doubly clad lightguides,” IEE Proc. Pt. J 134, 105–110 (1987).

Leproux, P.

F.  Brechet, P.  Leproux, P.  Roy, J.  Marcou, D.  Pagnoux, “Analysis of bandpass filtering behaviour of singlemode depressed-core-index photonic-bandgap fibre,” Electron. Lett. 36, 870–2 (2000).
[CrossRef]

Lines, M. E.

M. E.  Lines, W. A.  Reed, D. J.  Di Giovanni, J. R.  Hamblin, “Explanation of anomalous loss in high delta singlemode fibres,” Electron. Lett. 35, 1009–10 (1999).
[CrossRef]

Litchinitser, N. M.

Love, J. D.

A. W.  Snyder, J. D.  Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).

Luan, F.

Managan, B. J.

R. F.  Cregan, B. J.  Managan, J. C.  Knight, T. A.  Birks, P. St. J.  Russell, P. J.  Roberts, D. C.  Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–9 (1999).
[CrossRef] [PubMed]

Marcou, J.

F.  Brechet, P.  Leproux, P.  Roy, J.  Marcou, D.  Pagnoux, “Analysis of bandpass filtering behaviour of singlemode depressed-core-index photonic-bandgap fibre,” Electron. Lett. 36, 870–2 (2000).
[CrossRef]

Marom, E.

Matsumura, H.

W. A.  Gambling, H.  Matsumura, “Simple characterisation factor for practical single-mode fibres,” Electron. Lett. 13, 691–3 (1977).
[CrossRef]

McPhedran, R. C.

Meade, R. D.

J. D.  Joannopoulos, R. D.  Meade, J. N.  Winn, Photonic Crystals (Princeton University Press, 1995).

Muller, D.

C. M.  Smith, N.  Venkataraman, M. T.  Gallagher, D.  Muller, J. A.  West, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–9 (2003).
[CrossRef] [PubMed]

Pagnoux, D.

F.  Brechet, P.  Leproux, P.  Roy, J.  Marcou, D.  Pagnoux, “Analysis of bandpass filtering behaviour of singlemode depressed-core-index photonic-bandgap fibre,” Electron. Lett. 36, 870–2 (2000).
[CrossRef]

Pearce, G. J.

Piché, M.

P. R.  Villeneuve, M.  Piché, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B 48, 4969–72 (1992).
[CrossRef]

Poladian, L.

N. A.  Issa, L.  Poladian, “Vector wave expansion method for leaky modes of microstructured fibers,” IEEE J. Lightwave Technol. 21, 1005–12 (2003).
[CrossRef]

Pottage, J. M.

Reed, W. A.

M. E.  Lines, W. A.  Reed, D. J.  Di Giovanni, J. R.  Hamblin, “Explanation of anomalous loss in high delta singlemode fibres,” Electron. Lett. 35, 1009–10 (1999).
[CrossRef]

Riishede, J.

J.  Riishede, J.  Lægsgaard, J.  Broeng, A.  Bjarklev, “All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm,” J. Opt. A 6, 667–70 (2004).
[CrossRef]

Ripin, D. J.

Y.  Fink, D. J.  Ripin, S. H.  Fan, C. P.  Chen, J. D.  Joannopoulos, E. L.  Thomas, “Guiding optical light in air using an all-dielectric structure,” IEEE J. Lightwave Technol. 17, 2039–41 (1999).
[CrossRef]

Roberts, P. J.

R. F.  Cregan, B. J.  Managan, J. C.  Knight, T. A.  Birks, P. St. J.  Russell, P. J.  Roberts, D. C.  Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–9 (1999).
[CrossRef] [PubMed]

T. A.  Birks, P. J.  Roberts, P. St. J.  Russell, D. M.  Atkin, T. J.  Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–2 (1995).
[CrossRef]

Roy, P.

F.  Brechet, P.  Leproux, P.  Roy, J.  Marcou, D.  Pagnoux, “Analysis of bandpass filtering behaviour of singlemode depressed-core-index photonic-bandgap fibre,” Electron. Lett. 36, 870–2 (2000).
[CrossRef]

Russell, P. St. J.

T. A.  Birks, D. M.  Bird, T. D.  Hedley, J. M.  Pottage, P. St. J.  Russell, “Scaling laws and vector effects in bandgap-guiding fibres,” Opt. Express 12, 69–74 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-69.
[CrossRef] [PubMed]

F.  Luan, A. K.  George, T. D.  Hedley, G. J.  Pearce, D. M.  Bird, J. C.  Knight, P. St. J.  Russell, “All-solid photonic band gap fiber,” Opt. Lett. 29, 2369–71 (2004).
[CrossRef] [PubMed]

P. St. J.  Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

R. F.  Cregan, B. J.  Managan, J. C.  Knight, T. A.  Birks, P. St. J.  Russell, P. J.  Roberts, D. C.  Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–9 (1999).
[CrossRef] [PubMed]

T. A.  Birks, P. J.  Roberts, P. St. J.  Russell, D. M.  Atkin, T. J.  Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–2 (1995).
[CrossRef]

W. J.  Wadsworth, N.  Joly, J. C.  Knight, T. A.  Birks, F.  Biancalana, P. St. J.  Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers,” Opt. Express 12, 299–309 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299.
[CrossRef] [PubMed]

Shepherd, T. J.

T. A.  Birks, P. J.  Roberts, P. St. J.  Russell, D. M.  Atkin, T. J.  Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–2 (1995).
[CrossRef]

Smith, C. M.

C. M.  Smith, N.  Venkataraman, M. T.  Gallagher, D.  Muller, J. A.  West, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–9 (2003).
[CrossRef] [PubMed]

Snyder, A. W.

A. W.  Snyder, J. D.  Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).

Thomas, E. L.

Y.  Fink, D. J.  Ripin, S. H.  Fan, C. P.  Chen, J. D.  Joannopoulos, E. L.  Thomas, “Guiding optical light in air using an all-dielectric structure,” IEEE J. Lightwave Technol. 17, 2039–41 (1999).
[CrossRef]

Trevor, D. J.

R. T.  Bise, R. S.  Windeler, K. S.  Kranz, C.  Kerbage, B. J.  Eggleton, D. J.  Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication , Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002) 466–8.

Venkataraman, N.

C. M.  Smith, N.  Venkataraman, M. T.  Gallagher, D.  Muller, J. A.  West, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–9 (2003).
[CrossRef] [PubMed]

Villeneuve, P. R.

P. R.  Villeneuve, M.  Piché, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B 48, 4969–72 (1992).
[CrossRef]

Wadsworth, W. J.

W. J.  Wadsworth, N.  Joly, J. C.  Knight, T. A.  Birks, F.  Biancalana, P. St. J.  Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers,” Opt. Express 12, 299–309 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299.
[CrossRef] [PubMed]

West, J. A.

C. M.  Smith, N.  Venkataraman, M. T.  Gallagher, D.  Muller, J. A.  West, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–9 (2003).
[CrossRef] [PubMed]

White, T. P.

Windeler, R. S.

R. T.  Bise, R. S.  Windeler, K. S.  Kranz, C.  Kerbage, B. J.  Eggleton, D. J.  Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication , Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002) 466–8.

Winn, J. N.

J. D.  Joannopoulos, R. D.  Meade, J. N.  Winn, Photonic Crystals (Princeton University Press, 1995).

Yariv, A.

Yeh, P.

Electron. Lett. (4)

T. A.  Birks, P. J.  Roberts, P. St. J.  Russell, D. M.  Atkin, T. J.  Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–2 (1995).
[CrossRef]

F.  Brechet, P.  Leproux, P.  Roy, J.  Marcou, D.  Pagnoux, “Analysis of bandpass filtering behaviour of singlemode depressed-core-index photonic-bandgap fibre,” Electron. Lett. 36, 870–2 (2000).
[CrossRef]

W. A.  Gambling, H.  Matsumura, “Simple characterisation factor for practical single-mode fibres,” Electron. Lett. 13, 691–3 (1977).
[CrossRef]

M. E.  Lines, W. A.  Reed, D. J.  Di Giovanni, J. R.  Hamblin, “Explanation of anomalous loss in high delta singlemode fibres,” Electron. Lett. 35, 1009–10 (1999).
[CrossRef]

IEE Proc. Pt. J (1)

R. J.  Black, J.  Lapierre, J.  Bures, “Field evolution in doubly clad lightguides,” IEE Proc. Pt. J 134, 105–110 (1987).

IEEE J. Lightwave Technol. (2)

Y.  Fink, D. J.  Ripin, S. H.  Fan, C. P.  Chen, J. D.  Joannopoulos, E. L.  Thomas, “Guiding optical light in air using an all-dielectric structure,” IEEE J. Lightwave Technol. 17, 2039–41 (1999).
[CrossRef]

N. A.  Issa, L.  Poladian, “Vector wave expansion method for leaky modes of microstructured fibers,” IEEE J. Lightwave Technol. 21, 1005–12 (2003).
[CrossRef]

J. Opt. A (2)

J.  Lægsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A 6, 798–804 (2004).
[CrossRef]

J.  Riishede, J.  Lægsgaard, J.  Broeng, A.  Bjarklev, “All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm,” J. Opt. A 6, 667–70 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

Nature (1)

C. M.  Smith, N.  Venkataraman, M. T.  Gallagher, D.  Muller, J. A.  West, N. F.  Borrelli, D. C.  Allan, K. W.  Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–9 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. B (1)

P. R.  Villeneuve, M.  Piché, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B 48, 4969–72 (1992).
[CrossRef]

Science (2)

R. F.  Cregan, B. J.  Managan, J. C.  Knight, T. A.  Birks, P. St. J.  Russell, P. J.  Roberts, D. C.  Allen, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–9 (1999).
[CrossRef] [PubMed]

P. St. J.  Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

Other (8)

R. T.  Bise, R. S.  Windeler, K. S.  Kranz, C.  Kerbage, B. J.  Eggleton, D. J.  Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication , Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002) 466–8.

D. C.  Allen et al. in Photonic Crystals and Light Localization in the 21st Century (ed. C. M.  Soukoulis) 305–320 (Kluwer Academic, Dordrecht, 2001).

J. D.  Joannopoulos, R. D.  Meade, J. N.  Winn, Photonic Crystals (Princeton University Press, 1995).

Corning Corguide, core diameter 50 µm, cladding diameter 125 µm, numerical aperture 0.21.

Corning SMF-28, core diameter 9 µm, cladding diameter 125 µm, index contrast 0.36%, second-mode cutoff wavelength <1260 nm.

J.  Hecht, Understanding Fiber Optics (Prentice Hall, Columbus, 1999).

A. W.  Snyder, J. D.  Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).

W. J.  Wadsworth, N.  Joly, J. C.  Knight, T. A.  Birks, F.  Biancalana, P. St. J.  Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers,” Opt. Express 12, 299–309 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299.
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Optical micrograph of the end-face of the empty photonic crystal fibre preform. (b) Optical micrograph of part of the partly-filled preform, showing some multimode fibres whose large cores will form nodes in the bandgap fibre’s cladding, and the one single-mode fibre (lower left) that will form the effectively-undoped core of the bandgap fibre. (c) Scanning electron micrograph of the end-face of fibre A drawn from a filled preform. The high-index nodes appear light in the backscattered-electron image because Ge is a stronger scatterer of electrons than Si. (A carbon coating was used under the SEM, as it is more transparent than gold.) The residual single-mode core is barely visible within the low-index bandgap-guiding core in the centre.

Fig. 2.
Fig. 2.

(a) Output near-field images from 10 m of fibre A at indicated wavelengths for wide illumination (hence the nodes are lit up). A bandgap-guided mode is present in the central core for green and orange light. (b) Transmission spectra of fibre A, measured (black curve) and calculated (broken curve) for 0.2 m and measured (blue curve) for 10 m. The wavelengths of the images in (a) are marked as coloured circles on the corresponding curve.

Fig. 3.
Fig. 3.

(a) Output near-field image from 1.8 m of fibre B at 650 nm wavelength for tightly-focused illumination (hence only the bandgap-guided core mode is lit up). (b) The intensity pattern calculated for fibre B at the same wavelength. Note the six faint satellite spots around the main lobe of the pattern in both images.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V = 2 π ρ λ N A ,

Metrics