Abstract

A new projection pattern control technique is presented in an attempt to solve the problem whereby an image having an ideal intensity distribution cannot be photographed when measurement conditions, such as object color or object surface reflection, change. The proposed technique can adjust the intensity distribution of a projection pattern automatically, according to changes in the measurement conditions. An image with an ideal intensity distribution can then be obtained in a short time, approximately three projections on average. Thus, the speed, robustness, and practicality of 3-D image measurement can be improved.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.  Batlle, E.  Mouaddib, J.  Salvi, “Recent progress in coded structured light as a technique to solve the correspondence problem: a survey,” Pattern Recogn. 31, 963–982 (1998).
    [CrossRef]
  2. E.  Horn, N.  Kiryati, “Toward optimal structured light patterns,” Image Vision Comput. 17, 87–97 (1999).
    [CrossRef]
  3. Y. C.  Hsieh, “Decoding structured light patterns for three dimensional imaging systems,” Pattern Recogn. 34, 343–349 (2001).
    [CrossRef]
  4. B.  Carrihill, R.  Hummel, “Experiments with the intensity ratio depth sensor,” Computer Vision, Graphics and Image Processing 32, 337–358(1985).
    [CrossRef]
  5. M.  Ito, A.  Ishii, “A Three-Level Checkerboard Pattern (TCP) Projection Method for Curved Surface Measurement,” Pattern Recogn. 28, 27–40 (1995).
    [CrossRef]
  6. K.  Kalms, P.  Jueptner, W.  Osten, “Automatic adaptation of projected fringe patterns using a programmable LCD-projector,” in Sensors, Sensor Systems, and Sensor Data Processing , O.  Loffeld, ed., Proc. SPIE 3100, 156–165(1997).
  7. E.  Schubert, “Fast 3-D object recognition using multiple color coded illumination,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 3057–3060.
  8. D.  Caspi, N.  Kiryati, J.  Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Analysis and Machine Intelligence 20, 470–480 (1998).
    [CrossRef]
  9. C.  Lu, S.  Inokuchi, “Intensity-Modulated Moiré Topography,” App. Opt. 38, 4019–4029(1999).
    [CrossRef]
  10. H.  Hioki, “Adaptive light projection and highlight analysis method for measuring three-dimensional scenes,” in Proceedings of IEEE International Conference on Image Processing (Institute of Electrical and Electronics Engineers, New York, 2000), 1, pp. 565–568.
  11. G. H.  Notni, P.  Kühmstedt, M.  Heinze, G.  Notni, “Method for Simultaneous Measurement of 3-D Shape and Color Information of Complex Objects,” in Proceedings of the International Symposium on Photonics in Measurement , T.  Pfeifer, W.  Holzapfel, eds. (Aachen, Germany, 2002), pp. 293–298.
  12. G.  Sansoni, L.  Biancardi, U.  Minoni, F.  Docchio, “A Novel, Adaptive System for 3-D Optical Profilometry Using a Liquid Crystal Light Projector,” IEEE Trans. Instrumentation and Measurement 43, 558–565 (1994).
    [CrossRef]
  13. X.  Zhao, T.  Suzuki, O.  Sasaki, “Photothermal Phase-Modulating Laser Diode Interferometer with High-Speed Feedback Control,” Opt. Rev. 9, 13–17 (2002).
    [CrossRef]
  14. C.  Lu, G.  Cho, J.  Zhao, “Practical 3-D Image Measurement System using Monochrome-Projection Color-Analysis Technique,” in Proceedings of the 7th IASTED International Conference on computer graphics and imaging , M. H.  Hamza, ed. (Hawaii, USA, 2004), pp. 254–259.
  15. C.  Lu, L.  Xiang, “Optimal Intensity-Modulation Projection Technique for Three-Dimensional Shape Measurement,” App. Optics-IP, 42, 4649–4657 (2003).
    [CrossRef]

2003 (1)

C.  Lu, L.  Xiang, “Optimal Intensity-Modulation Projection Technique for Three-Dimensional Shape Measurement,” App. Optics-IP, 42, 4649–4657 (2003).
[CrossRef]

2002 (1)

X.  Zhao, T.  Suzuki, O.  Sasaki, “Photothermal Phase-Modulating Laser Diode Interferometer with High-Speed Feedback Control,” Opt. Rev. 9, 13–17 (2002).
[CrossRef]

2001 (1)

Y. C.  Hsieh, “Decoding structured light patterns for three dimensional imaging systems,” Pattern Recogn. 34, 343–349 (2001).
[CrossRef]

1999 (2)

E.  Horn, N.  Kiryati, “Toward optimal structured light patterns,” Image Vision Comput. 17, 87–97 (1999).
[CrossRef]

C.  Lu, S.  Inokuchi, “Intensity-Modulated Moiré Topography,” App. Opt. 38, 4019–4029(1999).
[CrossRef]

1998 (2)

D.  Caspi, N.  Kiryati, J.  Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Analysis and Machine Intelligence 20, 470–480 (1998).
[CrossRef]

J.  Batlle, E.  Mouaddib, J.  Salvi, “Recent progress in coded structured light as a technique to solve the correspondence problem: a survey,” Pattern Recogn. 31, 963–982 (1998).
[CrossRef]

1995 (1)

M.  Ito, A.  Ishii, “A Three-Level Checkerboard Pattern (TCP) Projection Method for Curved Surface Measurement,” Pattern Recogn. 28, 27–40 (1995).
[CrossRef]

1994 (1)

G.  Sansoni, L.  Biancardi, U.  Minoni, F.  Docchio, “A Novel, Adaptive System for 3-D Optical Profilometry Using a Liquid Crystal Light Projector,” IEEE Trans. Instrumentation and Measurement 43, 558–565 (1994).
[CrossRef]

1985 (1)

B.  Carrihill, R.  Hummel, “Experiments with the intensity ratio depth sensor,” Computer Vision, Graphics and Image Processing 32, 337–358(1985).
[CrossRef]

Batlle, J.

J.  Batlle, E.  Mouaddib, J.  Salvi, “Recent progress in coded structured light as a technique to solve the correspondence problem: a survey,” Pattern Recogn. 31, 963–982 (1998).
[CrossRef]

Biancardi, L.

G.  Sansoni, L.  Biancardi, U.  Minoni, F.  Docchio, “A Novel, Adaptive System for 3-D Optical Profilometry Using a Liquid Crystal Light Projector,” IEEE Trans. Instrumentation and Measurement 43, 558–565 (1994).
[CrossRef]

Carrihill, B.

B.  Carrihill, R.  Hummel, “Experiments with the intensity ratio depth sensor,” Computer Vision, Graphics and Image Processing 32, 337–358(1985).
[CrossRef]

Caspi, D.

D.  Caspi, N.  Kiryati, J.  Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Analysis and Machine Intelligence 20, 470–480 (1998).
[CrossRef]

Cho, G.

C.  Lu, G.  Cho, J.  Zhao, “Practical 3-D Image Measurement System using Monochrome-Projection Color-Analysis Technique,” in Proceedings of the 7th IASTED International Conference on computer graphics and imaging , M. H.  Hamza, ed. (Hawaii, USA, 2004), pp. 254–259.

Docchio, F.

G.  Sansoni, L.  Biancardi, U.  Minoni, F.  Docchio, “A Novel, Adaptive System for 3-D Optical Profilometry Using a Liquid Crystal Light Projector,” IEEE Trans. Instrumentation and Measurement 43, 558–565 (1994).
[CrossRef]

Heinze, M.

G. H.  Notni, P.  Kühmstedt, M.  Heinze, G.  Notni, “Method for Simultaneous Measurement of 3-D Shape and Color Information of Complex Objects,” in Proceedings of the International Symposium on Photonics in Measurement , T.  Pfeifer, W.  Holzapfel, eds. (Aachen, Germany, 2002), pp. 293–298.

Hioki, H.

H.  Hioki, “Adaptive light projection and highlight analysis method for measuring three-dimensional scenes,” in Proceedings of IEEE International Conference on Image Processing (Institute of Electrical and Electronics Engineers, New York, 2000), 1, pp. 565–568.

Horn, E.

E.  Horn, N.  Kiryati, “Toward optimal structured light patterns,” Image Vision Comput. 17, 87–97 (1999).
[CrossRef]

Hsieh, Y. C.

Y. C.  Hsieh, “Decoding structured light patterns for three dimensional imaging systems,” Pattern Recogn. 34, 343–349 (2001).
[CrossRef]

Hummel, R.

B.  Carrihill, R.  Hummel, “Experiments with the intensity ratio depth sensor,” Computer Vision, Graphics and Image Processing 32, 337–358(1985).
[CrossRef]

Inokuchi, S.

C.  Lu, S.  Inokuchi, “Intensity-Modulated Moiré Topography,” App. Opt. 38, 4019–4029(1999).
[CrossRef]

Ishii, A.

M.  Ito, A.  Ishii, “A Three-Level Checkerboard Pattern (TCP) Projection Method for Curved Surface Measurement,” Pattern Recogn. 28, 27–40 (1995).
[CrossRef]

Ito, M.

M.  Ito, A.  Ishii, “A Three-Level Checkerboard Pattern (TCP) Projection Method for Curved Surface Measurement,” Pattern Recogn. 28, 27–40 (1995).
[CrossRef]

Jueptner, P.

K.  Kalms, P.  Jueptner, W.  Osten, “Automatic adaptation of projected fringe patterns using a programmable LCD-projector,” in Sensors, Sensor Systems, and Sensor Data Processing , O.  Loffeld, ed., Proc. SPIE 3100, 156–165(1997).

Kalms, K.

K.  Kalms, P.  Jueptner, W.  Osten, “Automatic adaptation of projected fringe patterns using a programmable LCD-projector,” in Sensors, Sensor Systems, and Sensor Data Processing , O.  Loffeld, ed., Proc. SPIE 3100, 156–165(1997).

Kiryati, N.

E.  Horn, N.  Kiryati, “Toward optimal structured light patterns,” Image Vision Comput. 17, 87–97 (1999).
[CrossRef]

D.  Caspi, N.  Kiryati, J.  Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Analysis and Machine Intelligence 20, 470–480 (1998).
[CrossRef]

Kühmstedt, P.

G. H.  Notni, P.  Kühmstedt, M.  Heinze, G.  Notni, “Method for Simultaneous Measurement of 3-D Shape and Color Information of Complex Objects,” in Proceedings of the International Symposium on Photonics in Measurement , T.  Pfeifer, W.  Holzapfel, eds. (Aachen, Germany, 2002), pp. 293–298.

Lu, C.

C.  Lu, L.  Xiang, “Optimal Intensity-Modulation Projection Technique for Three-Dimensional Shape Measurement,” App. Optics-IP, 42, 4649–4657 (2003).
[CrossRef]

C.  Lu, S.  Inokuchi, “Intensity-Modulated Moiré Topography,” App. Opt. 38, 4019–4029(1999).
[CrossRef]

C.  Lu, G.  Cho, J.  Zhao, “Practical 3-D Image Measurement System using Monochrome-Projection Color-Analysis Technique,” in Proceedings of the 7th IASTED International Conference on computer graphics and imaging , M. H.  Hamza, ed. (Hawaii, USA, 2004), pp. 254–259.

Minoni, U.

G.  Sansoni, L.  Biancardi, U.  Minoni, F.  Docchio, “A Novel, Adaptive System for 3-D Optical Profilometry Using a Liquid Crystal Light Projector,” IEEE Trans. Instrumentation and Measurement 43, 558–565 (1994).
[CrossRef]

Mouaddib, E.

J.  Batlle, E.  Mouaddib, J.  Salvi, “Recent progress in coded structured light as a technique to solve the correspondence problem: a survey,” Pattern Recogn. 31, 963–982 (1998).
[CrossRef]

Notni, G.

G. H.  Notni, P.  Kühmstedt, M.  Heinze, G.  Notni, “Method for Simultaneous Measurement of 3-D Shape and Color Information of Complex Objects,” in Proceedings of the International Symposium on Photonics in Measurement , T.  Pfeifer, W.  Holzapfel, eds. (Aachen, Germany, 2002), pp. 293–298.

Notni, G. H.

G. H.  Notni, P.  Kühmstedt, M.  Heinze, G.  Notni, “Method for Simultaneous Measurement of 3-D Shape and Color Information of Complex Objects,” in Proceedings of the International Symposium on Photonics in Measurement , T.  Pfeifer, W.  Holzapfel, eds. (Aachen, Germany, 2002), pp. 293–298.

Osten, W.

K.  Kalms, P.  Jueptner, W.  Osten, “Automatic adaptation of projected fringe patterns using a programmable LCD-projector,” in Sensors, Sensor Systems, and Sensor Data Processing , O.  Loffeld, ed., Proc. SPIE 3100, 156–165(1997).

Salvi, J.

J.  Batlle, E.  Mouaddib, J.  Salvi, “Recent progress in coded structured light as a technique to solve the correspondence problem: a survey,” Pattern Recogn. 31, 963–982 (1998).
[CrossRef]

Sansoni, G.

G.  Sansoni, L.  Biancardi, U.  Minoni, F.  Docchio, “A Novel, Adaptive System for 3-D Optical Profilometry Using a Liquid Crystal Light Projector,” IEEE Trans. Instrumentation and Measurement 43, 558–565 (1994).
[CrossRef]

Sasaki, O.

X.  Zhao, T.  Suzuki, O.  Sasaki, “Photothermal Phase-Modulating Laser Diode Interferometer with High-Speed Feedback Control,” Opt. Rev. 9, 13–17 (2002).
[CrossRef]

Schubert, E.

E.  Schubert, “Fast 3-D object recognition using multiple color coded illumination,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 3057–3060.

Shamir, J.

D.  Caspi, N.  Kiryati, J.  Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Analysis and Machine Intelligence 20, 470–480 (1998).
[CrossRef]

Suzuki, T.

X.  Zhao, T.  Suzuki, O.  Sasaki, “Photothermal Phase-Modulating Laser Diode Interferometer with High-Speed Feedback Control,” Opt. Rev. 9, 13–17 (2002).
[CrossRef]

Xiang, L.

C.  Lu, L.  Xiang, “Optimal Intensity-Modulation Projection Technique for Three-Dimensional Shape Measurement,” App. Optics-IP, 42, 4649–4657 (2003).
[CrossRef]

Zhao, J.

C.  Lu, G.  Cho, J.  Zhao, “Practical 3-D Image Measurement System using Monochrome-Projection Color-Analysis Technique,” in Proceedings of the 7th IASTED International Conference on computer graphics and imaging , M. H.  Hamza, ed. (Hawaii, USA, 2004), pp. 254–259.

Zhao, X.

X.  Zhao, T.  Suzuki, O.  Sasaki, “Photothermal Phase-Modulating Laser Diode Interferometer with High-Speed Feedback Control,” Opt. Rev. 9, 13–17 (2002).
[CrossRef]

App. Opt. (1)

C.  Lu, S.  Inokuchi, “Intensity-Modulated Moiré Topography,” App. Opt. 38, 4019–4029(1999).
[CrossRef]

App. Optics-IP (1)

C.  Lu, L.  Xiang, “Optimal Intensity-Modulation Projection Technique for Three-Dimensional Shape Measurement,” App. Optics-IP, 42, 4649–4657 (2003).
[CrossRef]

Computer Vision, Graphics and Image Processing (1)

B.  Carrihill, R.  Hummel, “Experiments with the intensity ratio depth sensor,” Computer Vision, Graphics and Image Processing 32, 337–358(1985).
[CrossRef]

IEEE Trans. Instrumentation and Measurement (1)

G.  Sansoni, L.  Biancardi, U.  Minoni, F.  Docchio, “A Novel, Adaptive System for 3-D Optical Profilometry Using a Liquid Crystal Light Projector,” IEEE Trans. Instrumentation and Measurement 43, 558–565 (1994).
[CrossRef]

IEEE Trans. Pattern Analysis and Machine Intelligence (1)

D.  Caspi, N.  Kiryati, J.  Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Analysis and Machine Intelligence 20, 470–480 (1998).
[CrossRef]

Image Vision Comput. (1)

E.  Horn, N.  Kiryati, “Toward optimal structured light patterns,” Image Vision Comput. 17, 87–97 (1999).
[CrossRef]

Opt. Rev. (1)

X.  Zhao, T.  Suzuki, O.  Sasaki, “Photothermal Phase-Modulating Laser Diode Interferometer with High-Speed Feedback Control,” Opt. Rev. 9, 13–17 (2002).
[CrossRef]

Pattern Recogn. (3)

Y. C.  Hsieh, “Decoding structured light patterns for three dimensional imaging systems,” Pattern Recogn. 34, 343–349 (2001).
[CrossRef]

J.  Batlle, E.  Mouaddib, J.  Salvi, “Recent progress in coded structured light as a technique to solve the correspondence problem: a survey,” Pattern Recogn. 31, 963–982 (1998).
[CrossRef]

M.  Ito, A.  Ishii, “A Three-Level Checkerboard Pattern (TCP) Projection Method for Curved Surface Measurement,” Pattern Recogn. 28, 27–40 (1995).
[CrossRef]

Other (5)

K.  Kalms, P.  Jueptner, W.  Osten, “Automatic adaptation of projected fringe patterns using a programmable LCD-projector,” in Sensors, Sensor Systems, and Sensor Data Processing , O.  Loffeld, ed., Proc. SPIE 3100, 156–165(1997).

E.  Schubert, “Fast 3-D object recognition using multiple color coded illumination,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 3057–3060.

C.  Lu, G.  Cho, J.  Zhao, “Practical 3-D Image Measurement System using Monochrome-Projection Color-Analysis Technique,” in Proceedings of the 7th IASTED International Conference on computer graphics and imaging , M. H.  Hamza, ed. (Hawaii, USA, 2004), pp. 254–259.

H.  Hioki, “Adaptive light projection and highlight analysis method for measuring three-dimensional scenes,” in Proceedings of IEEE International Conference on Image Processing (Institute of Electrical and Electronics Engineers, New York, 2000), 1, pp. 565–568.

G. H.  Notni, P.  Kühmstedt, M.  Heinze, G.  Notni, “Method for Simultaneous Measurement of 3-D Shape and Color Information of Complex Objects,” in Proceedings of the International Symposium on Photonics in Measurement , T.  Pfeifer, W.  Holzapfel, eds. (Aachen, Germany, 2002), pp. 293–298.

Supplementary Material (1)

» Media 1: GIF (129 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Ideal histogram of the observation pattern image

Fig. 2.
Fig. 2.

Observation images and intensity distributions of two objects with different surface reflection factors: (a) Original image, (b) Observation image, (c) Intensity distribution of line AA’, (d) Intensity distribution of line BB’, (e) Histogram of left object, and (f) Histogram of right object.

Fig. 3.
Fig. 3.

Intensity control of projection pattern flowchart

Fig. 4.
Fig. 4.

Measurement results using the proposed technique: (a) Initial projection pattern, (b) Initial observation image, (c) Measurement channel image of (b), (d) Measurement image of (b), (e) Adjusted projection pattern, (f) Observation image by pattern (e), (g) Measurement channel image of (f), (h) Measurement image of (f), (i) Histogram of (d), (j) Histogram of (h), (k) Corrected measurement image, (l) Intensity distribution of line AA’, and (m) Intensity distribution of line BB’.

Fig. 5.
Fig. 5.

Move of 3-D representation (129 KB GIF)

Fig. 6.
Fig. 6.

Measurement results obtained by camera automatic-mode: (a) Observation image, (b) Measurement image, and (c) Histogram of (b)

Fig. 7.
Fig. 7.

Measurement objects for the evaluation experiment

Tables (2)

Tables Icon

Table 1. Experimental Data for Intensity Control of Projection Pattern

Tables Icon

Table 2. Experimental Results of Color-Intensity Control of Projection Pattern

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I l ( i , j ) = Max { I R ( i , j ) , I G ( i , j ) , I B ( i , j ) }
I l ( i , j ) = { I G ( i , j ) D G ( i , j ) = D Max ( i , j ) & I G ( i , j ) λ I R ( i , j ) I B ( i , j ) D B ( i , j ) = D Max ( i , j ) & I B ( i , j ) λ I R ( i , j )
D k ( i , j ) = i = δ δ j = δ δ I k ( i + δ , j + δ ) k ( R , G , B )
D Max ( i , j ) = Max { D R ( i , j ) , D G ( i , j ) , D B ( i , j ) }
V n = V n 1 C ( S S n 1 )
P n = P n 1 + { k 1 ( S S n 1 ) S n 1 + k 2 V 0 V n V 0 } P n 1 δ ( n 1 ) + k 3 ( S S n 1 ) S n 1 P n 1 δ ( n 2 )
+ k 4 S S n 1 S n 1 S n 2 ( P n 1 P n 2 ) u ( n 3 ) n = 1 , 2 , 3 ,
I ( i , j ) = k I l ( i , j ) I 0 ( i , j ) = k M ( n ) O ( x , y ) P 0 O ( x , y ) = k M ( n )

Metrics