Abstract

In this paper, we describe a photopolymerizable silica glass based on acrylamide (AA) and N,N’-methylenebisacrylamide (BMA) as monomers, triethanolamine (TEA) as coinitiator and yellowish eosin (YE) as photoinitiator. We studied different compositions, analyzing the diffraction efficiency, energetic exposure and effective thickness obtained in the holographic gratings. A diffraction efficiency of 60 % with an energetic exposure of 139 mJ/cm 2 and an effective thickness of 1.1 mm were obtained. Also, by varying the photopolymerizable composition of the material diffraction efficiencies higher than 80 % can be reached with an energetic exposure of 10 mJ/cm 2 and an effective thickness of 113 µm. These values are similar to those obtained in conventional photopolymer systems in polyvinylalcohol and better than the values reached in other sol-gel compositions. Also, 9 holograms were angular multiplexed with diffraction efficiencies between 6 and 12 % and total exposure time shorter than 150 ms, with a dynamic range M/#=2.4.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Dhar, K. R. Curtis, M. L. Schilling, M. Schnoes, M. Tackitt, S. Campbell, W. L. Wilson, and A. Hill, “Digital holographic data storage in photopolymer systems,” in Advanced optical memories and interfaces to computer storage, vol. 3468, pp. 40–42 (SPIE, San Diego, 1998).
  2. H. J. Coufal and G. T. Sincerbox, Holographic data storage (Springer, Berlin, 2000).
    [CrossRef]
  3. G. J. Steckman, V. Shelkovnikov, V. Berezhnaya, T. G. nd I. Solomatine, and D. Psaltis, “Holographic recording in a photopolymer by optically induced detachment of chromophores,” Opt. Lett. 25, 607–609 (2000).
    [CrossRef]
  4. D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/µm2,” in Organic Holographic Materials and Applications, vol. 5216 (SPIE, San Diego, 2003).
  5. S. Blaya, L. Carretero, R. F. Madrigal, and A. Fimia, “Study of the optimization of a photopolymerizable holographic recording material based on polyvinylalcohol using angular responses,” Opt. Mater. 23, 529–538 (2003).
    [CrossRef]
  6. S. Blaya, L. Carretero, R. Madrigal, and A. Fimia, “Study of effect of bifunctional crosslinking agent in polyvinylalcohol-based photopolymerizable holographic recording material using angular responses,” Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 41, 3730–3736 (2002).
  7. S. Blaya, R. Mallavia, L. Carretero, A. Fimia, and R. F. Madrigal, “Highly sensitive photopolymerizable dry film for use in real time holography,” Appl. Phys. Lett. 73, 1628–1630 (1998).
    [CrossRef]
  8. C. García, A. Fimia, and I. Pascual, “Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of photopolymerization,” Appl. Phys. B 72, 311–316 (2000).
    [CrossRef]
  9. S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, and A. Fimia, “New photopolymerizable holographic recording material based on polyvinylalcohol and 2-hydroxiethylmethacrylate (HEMA),” Appl. Phys. B-Lasers Opt. 74, 603–605 (2002).
    [CrossRef]
  10. P. Cheben, T. Belenguer, A. Nuńez, F. del Monte, and D. Levy, “Holographic diffraction gratings recording in organically modified silica gels,” Opt. Lett. 21, 1857–1859 (1996).
    [CrossRef] [PubMed]
  11. P. Cheben and M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100 % for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
    [CrossRef]
  12. G. Ramos, A. Álvarez-Herrero, T. Belenguer, D. Levy, and F. del Monte, “Photopolymerizable hybrid sol-gel material for holographic recording,” in Organic holographic materials and applications, vol. 5216, pp. 116–125, SPIE (SPIE, San Diego, 2003).
  13. C. Wang, Y. Zhang, Y. Lu, and Y. Wei, “A novel bulk sol-gel process to prepare monolithic silica materials,” J. Mater. Res. 14, 4098–4102 (1999).
    [CrossRef]
  14. S. Blaya, P. Acebal, L. Carretero, and A. Fimia, “Pyrromethene-HEMA-based photopolymerizable holographic recording material,” Opt. Commun. 228, 55–61 (2003).
    [CrossRef]
  15. S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B-Lasers Opt. 77, 639–662 (2003).
    [CrossRef]
  16. S. Blaya, A. Murciano, P. Acebal, L. Carretero, M. Ulibarrena, and A. Fimia, “Diffraction gratings and diffusion coefficient determination of acrylamide and polyacrylami de in sol-gel glass.” Appl. Phys. Lett. Submitted (2004).
    [CrossRef]
  17. S. Blaya, L. Carretero, A. Fimia, R. Mallavia, R. F. Madrigal, R. Sastre, and F. Amat-Guerri, “Optimal composition of an acrylamide and N,N’-methylenebisacrylamide holographic recording material,” J. Mod. Opt. 45, 2573–2584 (1998).
  18. T. Kubota, “The bending of interference fringes inside a hologram,” Optica Acta 26, 731–743 (1979).
    [CrossRef]
  19. N. Uchida, “Calculation of diffraction efficiency in hologram gratings attenuated along the direction perpendicular to the grating vector,” J. Opt. Soc. Am 63, 280–287 (1973).
    [CrossRef]
  20. L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, and A. Fimia, “A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography,” J. Mod. Opt. 45, 2345–2354 (1998).
    [CrossRef]
  21. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Sys. Tech. J. 48, 2909–2945 (1969).

2003 (3)

S. Blaya, P. Acebal, L. Carretero, and A. Fimia, “Pyrromethene-HEMA-based photopolymerizable holographic recording material,” Opt. Commun. 228, 55–61 (2003).
[CrossRef]

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B-Lasers Opt. 77, 639–662 (2003).
[CrossRef]

S. Blaya, L. Carretero, R. F. Madrigal, and A. Fimia, “Study of the optimization of a photopolymerizable holographic recording material based on polyvinylalcohol using angular responses,” Opt. Mater. 23, 529–538 (2003).
[CrossRef]

2002 (2)

S. Blaya, L. Carretero, R. Madrigal, and A. Fimia, “Study of effect of bifunctional crosslinking agent in polyvinylalcohol-based photopolymerizable holographic recording material using angular responses,” Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 41, 3730–3736 (2002).

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, and A. Fimia, “New photopolymerizable holographic recording material based on polyvinylalcohol and 2-hydroxiethylmethacrylate (HEMA),” Appl. Phys. B-Lasers Opt. 74, 603–605 (2002).
[CrossRef]

2001 (1)

P. Cheben and M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100 % for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
[CrossRef]

2000 (2)

G. J. Steckman, V. Shelkovnikov, V. Berezhnaya, T. G. nd I. Solomatine, and D. Psaltis, “Holographic recording in a photopolymer by optically induced detachment of chromophores,” Opt. Lett. 25, 607–609 (2000).
[CrossRef]

C. García, A. Fimia, and I. Pascual, “Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of photopolymerization,” Appl. Phys. B 72, 311–316 (2000).
[CrossRef]

1999 (1)

C. Wang, Y. Zhang, Y. Lu, and Y. Wei, “A novel bulk sol-gel process to prepare monolithic silica materials,” J. Mater. Res. 14, 4098–4102 (1999).
[CrossRef]

1998 (3)

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, and A. Fimia, “A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography,” J. Mod. Opt. 45, 2345–2354 (1998).
[CrossRef]

S. Blaya, L. Carretero, A. Fimia, R. Mallavia, R. F. Madrigal, R. Sastre, and F. Amat-Guerri, “Optimal composition of an acrylamide and N,N’-methylenebisacrylamide holographic recording material,” J. Mod. Opt. 45, 2573–2584 (1998).

S. Blaya, R. Mallavia, L. Carretero, A. Fimia, and R. F. Madrigal, “Highly sensitive photopolymerizable dry film for use in real time holography,” Appl. Phys. Lett. 73, 1628–1630 (1998).
[CrossRef]

1996 (1)

1979 (1)

T. Kubota, “The bending of interference fringes inside a hologram,” Optica Acta 26, 731–743 (1979).
[CrossRef]

1973 (1)

N. Uchida, “Calculation of diffraction efficiency in hologram gratings attenuated along the direction perpendicular to the grating vector,” J. Opt. Soc. Am 63, 280–287 (1973).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Sys. Tech. J. 48, 2909–2945 (1969).

Acebal, P.

S. Blaya, P. Acebal, L. Carretero, and A. Fimia, “Pyrromethene-HEMA-based photopolymerizable holographic recording material,” Opt. Commun. 228, 55–61 (2003).
[CrossRef]

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B-Lasers Opt. 77, 639–662 (2003).
[CrossRef]

S. Blaya, A. Murciano, P. Acebal, L. Carretero, M. Ulibarrena, and A. Fimia, “Diffraction gratings and diffusion coefficient determination of acrylamide and polyacrylami de in sol-gel glass.” Appl. Phys. Lett. Submitted (2004).
[CrossRef]

Álvarez-Herrero, A.

G. Ramos, A. Álvarez-Herrero, T. Belenguer, D. Levy, and F. del Monte, “Photopolymerizable hybrid sol-gel material for holographic recording,” in Organic holographic materials and applications, vol. 5216, pp. 116–125, SPIE (SPIE, San Diego, 2003).

Amat-Guerri, F.

S. Blaya, L. Carretero, A. Fimia, R. Mallavia, R. F. Madrigal, R. Sastre, and F. Amat-Guerri, “Optimal composition of an acrylamide and N,N’-methylenebisacrylamide holographic recording material,” J. Mod. Opt. 45, 2573–2584 (1998).

Belenguer, T.

P. Cheben, T. Belenguer, A. Nuńez, F. del Monte, and D. Levy, “Holographic diffraction gratings recording in organically modified silica gels,” Opt. Lett. 21, 1857–1859 (1996).
[CrossRef] [PubMed]

G. Ramos, A. Álvarez-Herrero, T. Belenguer, D. Levy, and F. del Monte, “Photopolymerizable hybrid sol-gel material for holographic recording,” in Organic holographic materials and applications, vol. 5216, pp. 116–125, SPIE (SPIE, San Diego, 2003).

Berezhnaya, V.

Blaya, S.

S. Blaya, P. Acebal, L. Carretero, and A. Fimia, “Pyrromethene-HEMA-based photopolymerizable holographic recording material,” Opt. Commun. 228, 55–61 (2003).
[CrossRef]

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B-Lasers Opt. 77, 639–662 (2003).
[CrossRef]

S. Blaya, L. Carretero, R. F. Madrigal, and A. Fimia, “Study of the optimization of a photopolymerizable holographic recording material based on polyvinylalcohol using angular responses,” Opt. Mater. 23, 529–538 (2003).
[CrossRef]

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, and A. Fimia, “New photopolymerizable holographic recording material based on polyvinylalcohol and 2-hydroxiethylmethacrylate (HEMA),” Appl. Phys. B-Lasers Opt. 74, 603–605 (2002).
[CrossRef]

S. Blaya, L. Carretero, R. Madrigal, and A. Fimia, “Study of effect of bifunctional crosslinking agent in polyvinylalcohol-based photopolymerizable holographic recording material using angular responses,” Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 41, 3730–3736 (2002).

S. Blaya, R. Mallavia, L. Carretero, A. Fimia, and R. F. Madrigal, “Highly sensitive photopolymerizable dry film for use in real time holography,” Appl. Phys. Lett. 73, 1628–1630 (1998).
[CrossRef]

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, and A. Fimia, “A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography,” J. Mod. Opt. 45, 2345–2354 (1998).
[CrossRef]

S. Blaya, L. Carretero, A. Fimia, R. Mallavia, R. F. Madrigal, R. Sastre, and F. Amat-Guerri, “Optimal composition of an acrylamide and N,N’-methylenebisacrylamide holographic recording material,” J. Mod. Opt. 45, 2573–2584 (1998).

S. Blaya, A. Murciano, P. Acebal, L. Carretero, M. Ulibarrena, and A. Fimia, “Diffraction gratings and diffusion coefficient determination of acrylamide and polyacrylami de in sol-gel glass.” Appl. Phys. Lett. Submitted (2004).
[CrossRef]

Butler, C. J.

D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/µm2,” in Organic Holographic Materials and Applications, vol. 5216 (SPIE, San Diego, 2003).

Calvo, M. L.

P. Cheben and M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100 % for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
[CrossRef]

Campbell, S.

L. Dhar, K. R. Curtis, M. L. Schilling, M. Schnoes, M. Tackitt, S. Campbell, W. L. Wilson, and A. Hill, “Digital holographic data storage in photopolymer systems,” in Advanced optical memories and interfaces to computer storage, vol. 3468, pp. 40–42 (SPIE, San Diego, 1998).

Carretero, L.

S. Blaya, P. Acebal, L. Carretero, and A. Fimia, “Pyrromethene-HEMA-based photopolymerizable holographic recording material,” Opt. Commun. 228, 55–61 (2003).
[CrossRef]

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B-Lasers Opt. 77, 639–662 (2003).
[CrossRef]

S. Blaya, L. Carretero, R. F. Madrigal, and A. Fimia, “Study of the optimization of a photopolymerizable holographic recording material based on polyvinylalcohol using angular responses,” Opt. Mater. 23, 529–538 (2003).
[CrossRef]

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, and A. Fimia, “New photopolymerizable holographic recording material based on polyvinylalcohol and 2-hydroxiethylmethacrylate (HEMA),” Appl. Phys. B-Lasers Opt. 74, 603–605 (2002).
[CrossRef]

S. Blaya, L. Carretero, R. Madrigal, and A. Fimia, “Study of effect of bifunctional crosslinking agent in polyvinylalcohol-based photopolymerizable holographic recording material using angular responses,” Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 41, 3730–3736 (2002).

S. Blaya, R. Mallavia, L. Carretero, A. Fimia, and R. F. Madrigal, “Highly sensitive photopolymerizable dry film for use in real time holography,” Appl. Phys. Lett. 73, 1628–1630 (1998).
[CrossRef]

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, and A. Fimia, “A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography,” J. Mod. Opt. 45, 2345–2354 (1998).
[CrossRef]

S. Blaya, L. Carretero, A. Fimia, R. Mallavia, R. F. Madrigal, R. Sastre, and F. Amat-Guerri, “Optimal composition of an acrylamide and N,N’-methylenebisacrylamide holographic recording material,” J. Mod. Opt. 45, 2573–2584 (1998).

S. Blaya, A. Murciano, P. Acebal, L. Carretero, M. Ulibarrena, and A. Fimia, “Diffraction gratings and diffusion coefficient determination of acrylamide and polyacrylami de in sol-gel glass.” Appl. Phys. Lett. Submitted (2004).
[CrossRef]

Cheben, P.

P. Cheben and M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100 % for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
[CrossRef]

P. Cheben, T. Belenguer, A. Nuńez, F. del Monte, and D. Levy, “Holographic diffraction gratings recording in organically modified silica gels,” Opt. Lett. 21, 1857–1859 (1996).
[CrossRef] [PubMed]

Coufal, H. J.

H. J. Coufal and G. T. Sincerbox, Holographic data storage (Springer, Berlin, 2000).
[CrossRef]

Curtis, K. R.

L. Dhar, K. R. Curtis, M. L. Schilling, M. Schnoes, M. Tackitt, S. Campbell, W. L. Wilson, and A. Hill, “Digital holographic data storage in photopolymer systems,” in Advanced optical memories and interfaces to computer storage, vol. 3468, pp. 40–42 (SPIE, San Diego, 1998).

del Monte, F.

P. Cheben, T. Belenguer, A. Nuńez, F. del Monte, and D. Levy, “Holographic diffraction gratings recording in organically modified silica gels,” Opt. Lett. 21, 1857–1859 (1996).
[CrossRef] [PubMed]

G. Ramos, A. Álvarez-Herrero, T. Belenguer, D. Levy, and F. del Monte, “Photopolymerizable hybrid sol-gel material for holographic recording,” in Organic holographic materials and applications, vol. 5216, pp. 116–125, SPIE (SPIE, San Diego, 2003).

Dhar, L.

L. Dhar, K. R. Curtis, M. L. Schilling, M. Schnoes, M. Tackitt, S. Campbell, W. L. Wilson, and A. Hill, “Digital holographic data storage in photopolymer systems,” in Advanced optical memories and interfaces to computer storage, vol. 3468, pp. 40–42 (SPIE, San Diego, 1998).

Fimia, A.

S. Blaya, P. Acebal, L. Carretero, and A. Fimia, “Pyrromethene-HEMA-based photopolymerizable holographic recording material,” Opt. Commun. 228, 55–61 (2003).
[CrossRef]

S. Blaya, L. Carretero, R. F. Madrigal, and A. Fimia, “Study of the optimization of a photopolymerizable holographic recording material based on polyvinylalcohol using angular responses,” Opt. Mater. 23, 529–538 (2003).
[CrossRef]

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B-Lasers Opt. 77, 639–662 (2003).
[CrossRef]

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, and A. Fimia, “New photopolymerizable holographic recording material based on polyvinylalcohol and 2-hydroxiethylmethacrylate (HEMA),” Appl. Phys. B-Lasers Opt. 74, 603–605 (2002).
[CrossRef]

S. Blaya, L. Carretero, R. Madrigal, and A. Fimia, “Study of effect of bifunctional crosslinking agent in polyvinylalcohol-based photopolymerizable holographic recording material using angular responses,” Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 41, 3730–3736 (2002).

C. García, A. Fimia, and I. Pascual, “Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of photopolymerization,” Appl. Phys. B 72, 311–316 (2000).
[CrossRef]

S. Blaya, R. Mallavia, L. Carretero, A. Fimia, and R. F. Madrigal, “Highly sensitive photopolymerizable dry film for use in real time holography,” Appl. Phys. Lett. 73, 1628–1630 (1998).
[CrossRef]

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, and A. Fimia, “A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography,” J. Mod. Opt. 45, 2345–2354 (1998).
[CrossRef]

S. Blaya, L. Carretero, A. Fimia, R. Mallavia, R. F. Madrigal, R. Sastre, and F. Amat-Guerri, “Optimal composition of an acrylamide and N,N’-methylenebisacrylamide holographic recording material,” J. Mod. Opt. 45, 2573–2584 (1998).

S. Blaya, A. Murciano, P. Acebal, L. Carretero, M. Ulibarrena, and A. Fimia, “Diffraction gratings and diffusion coefficient determination of acrylamide and polyacrylami de in sol-gel glass.” Appl. Phys. Lett. Submitted (2004).
[CrossRef]

García, C.

C. García, A. Fimia, and I. Pascual, “Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of photopolymerization,” Appl. Phys. B 72, 311–316 (2000).
[CrossRef]

Hill, A.

L. Dhar, K. R. Curtis, M. L. Schilling, M. Schnoes, M. Tackitt, S. Campbell, W. L. Wilson, and A. Hill, “Digital holographic data storage in photopolymer systems,” in Advanced optical memories and interfaces to computer storage, vol. 3468, pp. 40–42 (SPIE, San Diego, 1998).

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Sys. Tech. J. 48, 2909–2945 (1969).

Kubota, T.

T. Kubota, “The bending of interference fringes inside a hologram,” Optica Acta 26, 731–743 (1979).
[CrossRef]

Levy, D.

P. Cheben, T. Belenguer, A. Nuńez, F. del Monte, and D. Levy, “Holographic diffraction gratings recording in organically modified silica gels,” Opt. Lett. 21, 1857–1859 (1996).
[CrossRef] [PubMed]

G. Ramos, A. Álvarez-Herrero, T. Belenguer, D. Levy, and F. del Monte, “Photopolymerizable hybrid sol-gel material for holographic recording,” in Organic holographic materials and applications, vol. 5216, pp. 116–125, SPIE (SPIE, San Diego, 2003).

Lu, Y.

C. Wang, Y. Zhang, Y. Lu, and Y. Wei, “A novel bulk sol-gel process to prepare monolithic silica materials,” J. Mater. Res. 14, 4098–4102 (1999).
[CrossRef]

Madrigal, R.

S. Blaya, L. Carretero, R. Madrigal, and A. Fimia, “Study of effect of bifunctional crosslinking agent in polyvinylalcohol-based photopolymerizable holographic recording material using angular responses,” Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 41, 3730–3736 (2002).

Madrigal, R. F.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B-Lasers Opt. 77, 639–662 (2003).
[CrossRef]

S. Blaya, L. Carretero, R. F. Madrigal, and A. Fimia, “Study of the optimization of a photopolymerizable holographic recording material based on polyvinylalcohol using angular responses,” Opt. Mater. 23, 529–538 (2003).
[CrossRef]

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, and A. Fimia, “New photopolymerizable holographic recording material based on polyvinylalcohol and 2-hydroxiethylmethacrylate (HEMA),” Appl. Phys. B-Lasers Opt. 74, 603–605 (2002).
[CrossRef]

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, and A. Fimia, “A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography,” J. Mod. Opt. 45, 2345–2354 (1998).
[CrossRef]

S. Blaya, L. Carretero, A. Fimia, R. Mallavia, R. F. Madrigal, R. Sastre, and F. Amat-Guerri, “Optimal composition of an acrylamide and N,N’-methylenebisacrylamide holographic recording material,” J. Mod. Opt. 45, 2573–2584 (1998).

S. Blaya, R. Mallavia, L. Carretero, A. Fimia, and R. F. Madrigal, “Highly sensitive photopolymerizable dry film for use in real time holography,” Appl. Phys. Lett. 73, 1628–1630 (1998).
[CrossRef]

Mallavia, R.

S. Blaya, R. Mallavia, L. Carretero, A. Fimia, and R. F. Madrigal, “Highly sensitive photopolymerizable dry film for use in real time holography,” Appl. Phys. Lett. 73, 1628–1630 (1998).
[CrossRef]

S. Blaya, L. Carretero, A. Fimia, R. Mallavia, R. F. Madrigal, R. Sastre, and F. Amat-Guerri, “Optimal composition of an acrylamide and N,N’-methylenebisacrylamide holographic recording material,” J. Mod. Opt. 45, 2573–2584 (1998).

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, and A. Fimia, “A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography,” J. Mod. Opt. 45, 2345–2354 (1998).
[CrossRef]

Murciano, A.

S. Blaya, A. Murciano, P. Acebal, L. Carretero, M. Ulibarrena, and A. Fimia, “Diffraction gratings and diffusion coefficient determination of acrylamide and polyacrylami de in sol-gel glass.” Appl. Phys. Lett. Submitted (2004).
[CrossRef]

Nunez, A.

Pascual, I.

C. García, A. Fimia, and I. Pascual, “Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of photopolymerization,” Appl. Phys. B 72, 311–316 (2000).
[CrossRef]

Psaltis, D.

Raguin, D. H.

D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/µm2,” in Organic Holographic Materials and Applications, vol. 5216 (SPIE, San Diego, 2003).

Ramos, G.

G. Ramos, A. Álvarez-Herrero, T. Belenguer, D. Levy, and F. del Monte, “Photopolymerizable hybrid sol-gel material for holographic recording,” in Organic holographic materials and applications, vol. 5216, pp. 116–125, SPIE (SPIE, San Diego, 2003).

Sastre, R.

S. Blaya, L. Carretero, A. Fimia, R. Mallavia, R. F. Madrigal, R. Sastre, and F. Amat-Guerri, “Optimal composition of an acrylamide and N,N’-methylenebisacrylamide holographic recording material,” J. Mod. Opt. 45, 2573–2584 (1998).

Schilling, M. L.

L. Dhar, K. R. Curtis, M. L. Schilling, M. Schnoes, M. Tackitt, S. Campbell, W. L. Wilson, and A. Hill, “Digital holographic data storage in photopolymer systems,” in Advanced optical memories and interfaces to computer storage, vol. 3468, pp. 40–42 (SPIE, San Diego, 1998).

Schnoes, M.

L. Dhar, K. R. Curtis, M. L. Schilling, M. Schnoes, M. Tackitt, S. Campbell, W. L. Wilson, and A. Hill, “Digital holographic data storage in photopolymer systems,” in Advanced optical memories and interfaces to computer storage, vol. 3468, pp. 40–42 (SPIE, San Diego, 1998).

Shelkovnikov, V.

Sincerbox, G. T.

H. J. Coufal and G. T. Sincerbox, Holographic data storage (Springer, Berlin, 2000).
[CrossRef]

Solomatine, T. G. nd I.

Steckman, G. J.

Tackitt, M.

L. Dhar, K. R. Curtis, M. L. Schilling, M. Schnoes, M. Tackitt, S. Campbell, W. L. Wilson, and A. Hill, “Digital holographic data storage in photopolymer systems,” in Advanced optical memories and interfaces to computer storage, vol. 3468, pp. 40–42 (SPIE, San Diego, 1998).

Uchida, N.

N. Uchida, “Calculation of diffraction efficiency in hologram gratings attenuated along the direction perpendicular to the grating vector,” J. Opt. Soc. Am 63, 280–287 (1973).
[CrossRef]

Ulibarrena, M.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B-Lasers Opt. 77, 639–662 (2003).
[CrossRef]

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, and A. Fimia, “New photopolymerizable holographic recording material based on polyvinylalcohol and 2-hydroxiethylmethacrylate (HEMA),” Appl. Phys. B-Lasers Opt. 74, 603–605 (2002).
[CrossRef]

S. Blaya, A. Murciano, P. Acebal, L. Carretero, M. Ulibarrena, and A. Fimia, “Diffraction gratings and diffusion coefficient determination of acrylamide and polyacrylami de in sol-gel glass.” Appl. Phys. Lett. Submitted (2004).
[CrossRef]

Waldman, D. A.

D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/µm2,” in Organic Holographic Materials and Applications, vol. 5216 (SPIE, San Diego, 2003).

Wang, C.

C. Wang, Y. Zhang, Y. Lu, and Y. Wei, “A novel bulk sol-gel process to prepare monolithic silica materials,” J. Mater. Res. 14, 4098–4102 (1999).
[CrossRef]

Wei, Y.

C. Wang, Y. Zhang, Y. Lu, and Y. Wei, “A novel bulk sol-gel process to prepare monolithic silica materials,” J. Mater. Res. 14, 4098–4102 (1999).
[CrossRef]

Wilson, W. L.

L. Dhar, K. R. Curtis, M. L. Schilling, M. Schnoes, M. Tackitt, S. Campbell, W. L. Wilson, and A. Hill, “Digital holographic data storage in photopolymer systems,” in Advanced optical memories and interfaces to computer storage, vol. 3468, pp. 40–42 (SPIE, San Diego, 1998).

Zhang, Y.

C. Wang, Y. Zhang, Y. Lu, and Y. Wei, “A novel bulk sol-gel process to prepare monolithic silica materials,” J. Mater. Res. 14, 4098–4102 (1999).
[CrossRef]

Appl. Phys. B (1)

C. García, A. Fimia, and I. Pascual, “Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of photopolymerization,” Appl. Phys. B 72, 311–316 (2000).
[CrossRef]

Appl. Phys. B-Lasers Opt. (2)

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, and A. Fimia, “New photopolymerizable holographic recording material based on polyvinylalcohol and 2-hydroxiethylmethacrylate (HEMA),” Appl. Phys. B-Lasers Opt. 74, 603–605 (2002).
[CrossRef]

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B-Lasers Opt. 77, 639–662 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

P. Cheben and M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100 % for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
[CrossRef]

S. Blaya, R. Mallavia, L. Carretero, A. Fimia, and R. F. Madrigal, “Highly sensitive photopolymerizable dry film for use in real time holography,” Appl. Phys. Lett. 73, 1628–1630 (1998).
[CrossRef]

Bell. Sys. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Sys. Tech. J. 48, 2909–2945 (1969).

J. Mater. Res. (1)

C. Wang, Y. Zhang, Y. Lu, and Y. Wei, “A novel bulk sol-gel process to prepare monolithic silica materials,” J. Mater. Res. 14, 4098–4102 (1999).
[CrossRef]

J. Mod. Opt. (2)

S. Blaya, L. Carretero, A. Fimia, R. Mallavia, R. F. Madrigal, R. Sastre, and F. Amat-Guerri, “Optimal composition of an acrylamide and N,N’-methylenebisacrylamide holographic recording material,” J. Mod. Opt. 45, 2573–2584 (1998).

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, and A. Fimia, “A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography,” J. Mod. Opt. 45, 2345–2354 (1998).
[CrossRef]

J. Opt. Soc. Am (1)

N. Uchida, “Calculation of diffraction efficiency in hologram gratings attenuated along the direction perpendicular to the grating vector,” J. Opt. Soc. Am 63, 280–287 (1973).
[CrossRef]

Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. (1)

S. Blaya, L. Carretero, R. Madrigal, and A. Fimia, “Study of effect of bifunctional crosslinking agent in polyvinylalcohol-based photopolymerizable holographic recording material using angular responses,” Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 41, 3730–3736 (2002).

Opt. Commun. (1)

S. Blaya, P. Acebal, L. Carretero, and A. Fimia, “Pyrromethene-HEMA-based photopolymerizable holographic recording material,” Opt. Commun. 228, 55–61 (2003).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. (1)

S. Blaya, L. Carretero, R. F. Madrigal, and A. Fimia, “Study of the optimization of a photopolymerizable holographic recording material based on polyvinylalcohol using angular responses,” Opt. Mater. 23, 529–538 (2003).
[CrossRef]

Optica Acta (1)

T. Kubota, “The bending of interference fringes inside a hologram,” Optica Acta 26, 731–743 (1979).
[CrossRef]

Other (5)

S. Blaya, A. Murciano, P. Acebal, L. Carretero, M. Ulibarrena, and A. Fimia, “Diffraction gratings and diffusion coefficient determination of acrylamide and polyacrylami de in sol-gel glass.” Appl. Phys. Lett. Submitted (2004).
[CrossRef]

G. Ramos, A. Álvarez-Herrero, T. Belenguer, D. Levy, and F. del Monte, “Photopolymerizable hybrid sol-gel material for holographic recording,” in Organic holographic materials and applications, vol. 5216, pp. 116–125, SPIE (SPIE, San Diego, 2003).

D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/µm2,” in Organic Holographic Materials and Applications, vol. 5216 (SPIE, San Diego, 2003).

L. Dhar, K. R. Curtis, M. L. Schilling, M. Schnoes, M. Tackitt, S. Campbell, W. L. Wilson, and A. Hill, “Digital holographic data storage in photopolymer systems,” in Advanced optical memories and interfaces to computer storage, vol. 3468, pp. 40–42 (SPIE, San Diego, 1998).

H. J. Coufal and G. T. Sincerbox, Holographic data storage (Springer, Berlin, 2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental and theoretical angular selectivity curves of holographic gratings obtained in a silica glass photopolymerizable material at different energetic exposures (mJ/cm 2). Composition A and a total intensity of 1160 mW/cm 2 were used to record the hologram.

Fig. 2.
Fig. 2.

Scheme of the grating used for the analysis.

Fig. 3.
Fig. 3.

Experimental and theoretical angular selectivity curves of holographic gratings obtained in a silica glass photopolymerizable material for the different compositions used. The energetic exposure is in mJ/cm 2 and the total intensity used to record the hologram is 1160 mW/cm 2.

Fig. 4.
Fig. 4.

Experimental diffraction efficiency scan of the 9 angular multiplexed holograms recorded with composition D. The exposure times were 40 ms for the first grating, 20 ms for the second and 10 ms for the rest. The total intensity used to record the hologram was 1160 mW/cm 2. and θ is the angle of reconstruction where 0 refers to the used to record one hologram in the symmetrical setup.

Tables (2)

Tables Icon

Table 1. Composition of the different silica glass photosensitive materials studied

Tables Icon

Table 2. Results of the fittings of the holographic gratings recorded at different experimental conditions

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

c 0 d R [ z ] dz + α R [ z ] = j κ 0 e α g z sin ( ϕ ) e j ( Δ k z z + ξ ) S [ z ]
c 1 dS [ z ] dz + α S [ z ] = j κ 0 e α g z sin ( ϕ ) e j ( Δ k z z + ξ ) R [ z ]
c 0 = cos ( θ )
c 1 = cos ( 2 ϕ 2 θ 0 + θ )
Δ k = K [ cos ( ϕ θ 0 + θ ) cos ( ϕ ) ]
κ 0 = ( k n 1 + j α 1 ) 2
k 1 = k 0 K Δ k
ξ = 2 π n ( a 0 + a 1 l + a 2 l ( 2 l ) + a 3 l ( 3 3 l + l 2 ) )

Metrics