Abstract

We discuss a transform technique for analyzing the wave vector content of microstructured optical fiber (MOF) modes, which is computationally efficient and gives good physical insight into the nature of the mode. In particular, if the mode undergoes a transition from a bound state to an extended state, this is evident in the spreading-out of its transform. The method has been implemented in the multipole formulation for finding MOF modes, but are capable of adaptation to other formulations.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. St J. Russell, �??Photonic crystal fibers,�?? Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  2. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, �??Low-loss hollow-core silica/air photonic bandgap fibre,�?? Nature 424, 657-659 (2003).
    [CrossRef] [PubMed]
  3. B. T. Kuhlmey, R. C. McPhedran, and C. M. de Sterke, �??Modal cutoff in microstructured optical fibers,�?? Opt. Lett., 27, 1684-1686 (2002).
    [CrossRef]
  4. B. T. Kuhlmey, R. C. McPhedran, C. M. de Sterke, P. A. Robinson, G. Renversez, and D. Maystre, �??Microstructured optical fibers: where�??s the edge?,�?? Opt. Express,10, 1285-1290 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1285">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1285</a>.
    [CrossRef] [PubMed]
  5. N. A. Mortensen, �??Effective area of photonic crystal fibers�??, Opt. Express 10, 341-348 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-341">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-341</a>.
    [CrossRef] [PubMed]
  6. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, �??Multipole method for microstructured optical fibers I: formulation,�?? J. Opt. Soc. Am. B 19, 2322-2330 (2002), and �??Erratum,�?? J. Opt. Soc. Am. B 20, 1581 (2003).
    [CrossRef]
  7. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke and R. C. McPhedran, �?? Multipole formulation for microstructured optical fibers II: implementation and results,�?? J. Opt. Soc. Am. B 19, 2331-2340 (2002).
    [CrossRef]
  8. <a href="http://www.physics.usyd.edu.au/cudos/mofsoftware/">http://www.physics.usyd.edu.au/cudos/mofsoftware/</a>.
  9. T. A. Birks and J. C. Knight and St. J. Russel, �??Endlessly single-mode photonic crystal fiber,�?? Opt. Lett. 22 961-963 (1997).
    [CrossRef] [PubMed]
  10. M. Reed and B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators (Academic, New York, 1978).
  11. G. Allaire, C. Conca and M. Vanninathan,�??The Bloch Transform and applications,�?? 29th Congress of Numerical Analysis, ESAIM: Proceedings 3, 65-84 (1998), <a href="http://www.edpsciences.org/articlesproc/Vol.3/conca/conca.htm">http://www.edpsciences.org/articlesproc/Vol.3/conca/conca.htm</a>.
  12. P. R. McIsaac, �??Symmetry-induced modal characteristics of uniform waveguides-I: Summary of results,�?? IEEE Trans. Microwave Theory Tech. MTT-23, 421-429 (1975).
    [CrossRef]

29th Congress of Numerical Analysis, ESA (1)

G. Allaire, C. Conca and M. Vanninathan,�??The Bloch Transform and applications,�?? 29th Congress of Numerical Analysis, ESAIM: Proceedings 3, 65-84 (1998), <a href="http://www.edpsciences.org/articlesproc/Vol.3/conca/conca.htm">http://www.edpsciences.org/articlesproc/Vol.3/conca/conca.htm</a>.

IEEE Trans. Microwave Theory Tech. (1)

P. R. McIsaac, �??Symmetry-induced modal characteristics of uniform waveguides-I: Summary of results,�?? IEEE Trans. Microwave Theory Tech. MTT-23, 421-429 (1975).
[CrossRef]

J. Opt. Soc. Am. B (2)

B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke and R. C. McPhedran, �?? Multipole formulation for microstructured optical fibers II: implementation and results,�?? J. Opt. Soc. Am. B 19, 2331-2340 (2002).
[CrossRef]

T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, �??Multipole method for microstructured optical fibers I: formulation,�?? J. Opt. Soc. Am. B 19, 2322-2330 (2002), and �??Erratum,�?? J. Opt. Soc. Am. B 20, 1581 (2003).
[CrossRef]

Nature (1)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, �??Low-loss hollow-core silica/air photonic bandgap fibre,�?? Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Science (1)

P. St J. Russell, �??Photonic crystal fibers,�?? Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Other (2)

<a href="http://www.physics.usyd.edu.au/cudos/mofsoftware/">http://www.physics.usyd.edu.au/cudos/mofsoftware/</a>.

M. Reed and B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators (Academic, New York, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Field maps and total Bloch transform of a mode consisting essentially of a superposition of 6 Bloch waves. Note that the fields are depicted in the direct space (r-space), whereas the Bloch transform is in the reciprocal space (k-space): the white hexagon on the Bloch transform map depicts the edges of the first Brillouin zone. Here Λ=2.3 µm, λ=1.55 µm, d/Λ=0.15, and n silica=1.44402036.

Fig. 2.
Fig. 2.

Fundamental mode of two MOFs with different pitch, but with same d/Λ=0.3 and N r=8. The field distribution changes considerably between the two values of the pitch, but the Bloch transform remains a single peak centered on the origin. For all figures λ=1.55 µm and n silica=1.44402036.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

𝓑 n ( k ) = l = 1 N i exp ( i k · c l ) B n ( c l ) .
V ( r ) = m = 1 N B exp ( i k B m · r ) v k B m ( r ) ,
B n ( c l ) = m = 1 N B B ̂ n m exp ( i k B m · c l ) ,
c 𝓛 , G · c 2 π ,
𝓑 T ( k ) = n 1 sup k 2 ( 𝓑 n ( k ) ) 𝓑 n ( k ) .
𝓑 n ( k B m ) = l = 1 N i j = 1 N B B ̂ n j exp ( i ( k B m k B j ) · c l ) ,
= N i B ̂ n m + j = 1 , j m N B B ̂ n j l = 1 N i exp ( i ( k B m k B j ) · c l ) .
G 𝓛 * , j m , k B m k B j + G N i 1 2 Λ 4 .
𝓑 n ( k B m ) N i B ̂ n m .
B ̂ n m ( Σ j = 1 N B B ̂ n j 2 ) 1 2 .
l = 1 N i B n ( c l ) 2 = 1 𝓐 FBZ FBZ 𝓑 n ( k ) 2 d k N i i = 1 N B B ̂ n i 2 ,
𝓑 n ( k ) = B ̂ n sin ( N 1 ( k k b ) · u 1 Λ 2 ) sin ( ( k k b ) · u 1 Λ 2 ) sin ( N 2 ( k k b ) · u 2 Λ 2 ) sin ( ( k k b ) · u 2 Λ 2 ) ,
f ( x ) = { sin ( a x ) sin ( x ) if x m π , m a if x = m π , m .
δ k m 2 1.91 N m Λ .

Metrics