Abstract

We investigate the group velocity dispersion of tapered fibers that are immersed in different liquids. Using the Sellmeier equations fitted from measured refractive indices of these liquids, we are able to analyze the dispersion characteristics of the tapered fibers in a tailored liquid environment. Theoretical results show a large span of slowly varying anomalous group velocity dispersion characteristics. This leads to potentially significant improvements and a large bandwidth in supercontinuum generation in a tapered fiber. This holds true as well for a range of new fiber materials.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, �??Supercontinuum generation in tapered fibers,�?? Opt. Lett. 25, 1415-1417 (2000).
    [CrossRef]
  2. J. Teipel, K. Franke, D. Tuerke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, �??Characteristics of supercontinuum generation in tapered fibers using femtosecond laser pulses,�?? Appl. Phys. B 77, 245-250 (2003).
    [CrossRef]
  3. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, and P. St. J. Russell, �??Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,�?? J. Opt. Soc. Am. B 19, 2148-2155 (2002).
    [CrossRef]
  4. J. M. Harbold, F. Oe. Ilday, F. W. Wise, T. A. Birks, W. J. Wadsworth, and Z. Chen, �??Long-wavelength continuum generation about the second dispersion zero of a tapered fiber,�?? Opt. Lett. 27, 1558-1560 (2002).
    [CrossRef]
  5. T. P. M. Man, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, �??Fabrication of indefinitely long tapered fibers for supercontinuum generation,�?? Nonlinear Guided Waves and Their Applications, Vol. 55 of OSA Trends in Optics and Photonics, paper WB4 (2001).
  6. D. A. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, �??Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,�?? Science 288, 635-639 (2000).
    [CrossRef] [PubMed]
  7. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, and R. S. Windeler, �??Direct rf to optical frequency measurements with a femtosecond laser comb,�?? IEEE Trans. Instrum. Meas. 50, 552-555 (2001).
    [CrossRef]
  8. A.V. Husakou and J. Herrmann, �??Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,�?? Phys. Rev. Lett. 85, 203901 (2001).
    [CrossRef]
  9. A. V. Husakou and J. Herrmann, �??Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers,�?? Opt. Lett. 19, 2171-2182 (2002).
  10. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, �??Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,�?? Phys. Rev. Lett. 88, 173901 (2002).
    [CrossRef] [PubMed]
  11. W. H. Reeves, J. C. Knight, P. S. J. Russell, and P. J. Roberts, "Demonstration of ultra-flattened dispersion in photonic crystal fibers," Opt. Express 10, 609-613 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-609">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-609</a>.
    [CrossRef] [PubMed]
  12. C. Kerbage, R.S. Windeler, B.J. Eggleton, P. Mach, M. Dolinski, and J.A. Rogers, Opt. Comm. 204, 179 (2002).
    [CrossRef]
  13. Govind P. Agrawal, Nonlinear Fiber Optics �??Optics and Photonics, Third Edition, 2001, Academic Press.
  14. Warren J. Smith, Modern optical engineering 2nd ed., McGraw Hill, 1990, p. 174.
  15. J. Bertie, �??Acetonitrile-water mixtures,�?? J. Phys. Chemistry, 101, 4111 - 4119 (1997).
    [CrossRef]
  16. IAPWS 5C: "Release on refractive index of ordinary water substance as a function of wavelength, temperature and pressure," (September 1997), published by International Association for the Properties of Water and Steam.
  17. V. V. Ravi Kanth Kumar, A. K. George, W. H. Reeves, J. C. Knight, and P. St. J. Russell, �??Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,�?? Opt. Express 10, 1520-1525 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1520">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1520</a>.
    [CrossRef]
  18. Schott Optisches Glas Catalog (1997).
  19. Technical information �??Optisches Glass�?? from Schott Glass company (1988).

Appl. Phys. B (1)

J. Teipel, K. Franke, D. Tuerke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, �??Characteristics of supercontinuum generation in tapered fibers using femtosecond laser pulses,�?? Appl. Phys. B 77, 245-250 (2003).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, and R. S. Windeler, �??Direct rf to optical frequency measurements with a femtosecond laser comb,�?? IEEE Trans. Instrum. Meas. 50, 552-555 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chemistry (1)

J. Bertie, �??Acetonitrile-water mixtures,�?? J. Phys. Chemistry, 101, 4111 - 4119 (1997).
[CrossRef]

Opt. Comm. (1)

C. Kerbage, R.S. Windeler, B.J. Eggleton, P. Mach, M. Dolinski, and J.A. Rogers, Opt. Comm. 204, 179 (2002).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

OSA Trends in Optics and Photonics (1)

T. P. M. Man, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, �??Fabrication of indefinitely long tapered fibers for supercontinuum generation,�?? Nonlinear Guided Waves and Their Applications, Vol. 55 of OSA Trends in Optics and Photonics, paper WB4 (2001).

Phys. Rev. Lett. (2)

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, �??Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,�?? Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

A.V. Husakou and J. Herrmann, �??Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,�?? Phys. Rev. Lett. 85, 203901 (2001).
[CrossRef]

Schott Optisches Glas (1)

Schott Optisches Glas Catalog (1997).

Science (1)

D. A. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, �??Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,�?? Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Other (4)

Technical information �??Optisches Glass�?? from Schott Glass company (1988).

IAPWS 5C: "Release on refractive index of ordinary water substance as a function of wavelength, temperature and pressure," (September 1997), published by International Association for the Properties of Water and Steam.

Govind P. Agrawal, Nonlinear Fiber Optics �??Optics and Photonics, Third Edition, 2001, Academic Press.

Warren J. Smith, Modern optical engineering 2nd ed., McGraw Hill, 1990, p. 174.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The calculated GVD curve of a tapered SMF28 fused silica fiber in air with diameter (I) 1 µm, (II) 1.5 µm, (III) 2 µm, (IV) 2.5 µm, and (V) 3 µm.

Fig. 2.
Fig. 2.

The transmission curves of a 9.8 mm cuvette of water (dashed), acetonitrile (dotted), pentane and hexane (solid). The curves of pentane and hexane are almost on top of each other.

Fig. 3.
Fig. 3.

The GVD curve of tapered fiber with diameter 3 µm when it is immersed in (I) acetonitrile, (II) pentane, and (III) hexane.

Fig. 4.
Fig. 4.

The GVD curves of tapered fibers with diameters of (a) 2.5 µm and (b) 3.5 µm when they are immersed in (I) acetonitrile, (II) pentane, and (III) hexane.

Fig. 5.
Fig. 5.

The GVD curve of a fused silica tapered fiber with a diameter 3 µm when it is immersed in a mixture of pentane and hexane (1:1).

Fig. 6.
Fig. 6.

The second zero-dispersion wavelength position versus the ratio of hexane in the mixture (hexane and pentane) when the fused silica fiber taper diameter is 3 µm.

Fig. 7.
Fig. 7.

The GVD curve of a BK7 tapered fiber with diameter 2 µm when it is immersed in (I) acetonitrile, (II) pentane, and (III) hexane.

Fig. 8.
Fig. 8.

The GVD curve of a tapered fiber immersed in chlorobenzene, with a fiber taper material of (I) SF6, d=3 µm, (II) SF59, d=3 µm, (III) SF6, d=4 µm, and (IV) SF59, d=4 µm.

Tables (2)

Tables Icon

Table 1. Measured refractive indices and Sellmeier equations of acetonitrile, pentane, and hexane

Tables Icon

Table 2. The optical properties of glasses Fused silica, BK7, SF6, and SF59 (n2(esu)=174 n2(cm2/W))

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Acetonitrile: n = 1.32488 0.00171 / λ 2 + 0.00283 / λ 4
Pentane: n = 1.35079 + 0.00191 / λ 2 + 0.00016 / λ 4
Hexane: n = 1.37071 0.00137 / λ 2 + 0.00102 / λ 4

Metrics