Abstract

We demonstrate real-time interactive optical micromanipulation of a colloidal mixture consisting of particles with both lower (nL<n0) and higher (nH>n0) refractive indices than that of the suspending medium (n0). Spherical high- and low-index particles are trapped in the transverse plane by an array of confining optical potentials created by trapping beams with top-hat and annular cross-sectional intensity profiles, respectively. The applied method offers extensive reconfigurability in the spatial distribution and individual geometry of the optical traps. We experimentally demonstrate this unique feature by simultaneously trapping and independently manipulating various sizes of spherical soda lime micro - shells (nL≈1.2) and polystyrene micro-beads (nH=1.57) suspended in water (n0=1.33).

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Ashkin, �??Optical trapping and manipulation of neutral particles using lasers,�?? Proc. Natl. Acad. Sci. USA 94, 4853-4860 (1997).
    [CrossRef] [PubMed]
  2. K. Svoboda and S. M. Block, �??Biological applications of optical forces,�?? Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994).
    [CrossRef] [PubMed]
  3. D. G. Grier, �??A revolution in optical manipulation,�?? Nature 424, 810-816 (2003).
    [CrossRef] [PubMed]
  4. M. P. MacDonald, G. C. Spalding and K. Dholakia, �??Microfluidic sorting in an optical lattice,�?? Nature 426, 421-424 (2003).
    [CrossRef] [PubMed]
  5. J. Glückstad, �??Microfluidics: Sorting particles with light,�?? Nature Materials 3, 9-10 (2004).
    [CrossRef] [PubMed]
  6. A. Ashkin, �??Acceleration and trapping of particles by radiation-pressure,�?? Phys. Rev. Lett. 24, 156-159 (1970).
    [CrossRef]
  7. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm and S. Chu, �??Observation of a single-beam gradient force optical trap for dielectric particles,�?? Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  8. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, �??Optical trapping of a metal particle and a water droplet by a scanning laser beam,�?? Appl. Phys. Lett. 60, 807-809 (1992).
    [CrossRef]
  9. K. T. Gahagan and G. A. Swartzlander, �??Trapping of low-index microparticles in an optical vortex,�?? J. Opt. Soc. Am. B 15, 524-533 (1998).
    [CrossRef]
  10. K. T. Gahagan and G. A. Swartzlander, �??Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap,�?? J. Opt. Soc. Am. B 16, 533 (1999).
    [CrossRef]
  11. M. P. MacDonald, L. Paterson, W. Sibbett, K. Dholakia, P. Bryant, �??Trapping and manipulation of low-index particles in a two-dimensional interferometric optical trap,�?? Opt. Lett. 26, 863-865 (2001).
    [CrossRef]
  12. R. L. Eriksen, V. R. Daria and J. Glückstad, �??Fully dynamic multiple-beam optical tweezers,�?? Opt. Express 10, 597-602 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-597">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-597</a>
    [CrossRef] [PubMed]
  13. P. J. Rodrigo, R. L. Eriksen, V. R. Daria and J. Glückstad, �??Interactive light-driven and parallel manipulation of inhomogeneous particles,�?? Opt. Express 10, 1550-1556 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-26-1550">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-26-1550</a>
    [CrossRef] [PubMed]
  14. V. Daria, P. J. Rodrigo and J. Glückstad, �??Dynamic array of dark optical traps,�?? Appl. Phys. Lett. 84, 323-325 (2004).
    [CrossRef]
  15. J. Glückstad and P. C. Mogensen, �??Optimal phase contrast in common-path interferometry,�?? Appl. Opt. 40, 268-282 (2001).
    [CrossRef]
  16. S. Maruo, K. Ikuta and H. Korogi, �??Submicron manipulation tools driven by light in a liquid,�?? Appl. Phys. Lett. 82, 133-135 (2003).
    [CrossRef]

Annu. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S. M. Block, �??Biological applications of optical forces,�?? Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, �??Optical trapping of a metal particle and a water droplet by a scanning laser beam,�?? Appl. Phys. Lett. 60, 807-809 (1992).
[CrossRef]

V. Daria, P. J. Rodrigo and J. Glückstad, �??Dynamic array of dark optical traps,�?? Appl. Phys. Lett. 84, 323-325 (2004).
[CrossRef]

S. Maruo, K. Ikuta and H. Korogi, �??Submicron manipulation tools driven by light in a liquid,�?? Appl. Phys. Lett. 82, 133-135 (2003).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (2)

D. G. Grier, �??A revolution in optical manipulation,�?? Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

M. P. MacDonald, G. C. Spalding and K. Dholakia, �??Microfluidic sorting in an optical lattice,�?? Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

Nature Materials (1)

J. Glückstad, �??Microfluidics: Sorting particles with light,�?? Nature Materials 3, 9-10 (2004).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett (1)

M. P. MacDonald, L. Paterson, W. Sibbett, K. Dholakia, P. Bryant, �??Trapping and manipulation of low-index particles in a two-dimensional interferometric optical trap,�?? Opt. Lett. 26, 863-865 (2001).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

A. Ashkin, �??Acceleration and trapping of particles by radiation-pressure,�?? Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Proc. Natl. Acad. Sci. (1)

A. Ashkin, �??Optical trapping and manipulation of neutral particles using lasers,�?? Proc. Natl. Acad. Sci. USA 94, 4853-4860 (1997).
[CrossRef] [PubMed]

Supplementary Material (5)

» Media 1: AVI (1656 KB)     
» Media 2: AVI (1126 KB)     
» Media 3: AVI (2512 KB)     
» Media 4: AVI (1113 KB)     
» Media 5: AVI (1518 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup for simultaneous optical manipulation of high - and low-index particles at the trapping plane. The expanded beam (λ=830 nm) incident at the spatial light modulator (SLM) comes from a CW Ti:Sapphire (Ti:S) laser pumped by a visible CW Nd:YVO4 laser. Under computer control, arbitrary 2D phase patterns are encoded onto the reflective SLM. A high -contrast intensity mapping of the phase pattern is formed at the image plane (IP) and is captured by a CCD camera via partial reflection from a pellicle. The intensity distribution is optically relayed to the trapping plane. Standard brightfield detection is used to observe the trapped particles. PCF: phase contrast filter, Ir: iris diaphragm, L1, L2 and L3: lenses, MO: microscope objective, DM: dichroic mirror, TL: tube lens.

Fig. 2.
Fig. 2.

(a) Measured high -contrast intensity pattern at the output plane IP. Corresponding surface intensity plots for the representative (b) top-hat (in yellow square) and (c) annular or doughnut (in green square) trapping beams.

Fig. 3.
Fig. 3.

Diagram of the optical potential (a) for a high-index (solid curve) and a low-index (dashed curve) particle due to a beam with top-hat transverse intensity profile, and (b) for a low-index particle due to a beam with annular transverse intensity profile.

Fig. 4.
Fig. 4.

(AVI, 1.656 MB) Deflection of a soda lime hollow glass sphere from a computer-mouse controlled trapping beam with top-hat intensity profile. An arrow in each frame indicates the location of the beam at that instant. Scale bar, 10 µm.

Fig. 5.
Fig. 5.

(AVI, 1.126 MB) Raking of low-index particles to a region of interest achieved by scanning a bright linear intensity pattern in the x-y plane. The arrow (frame 1) indicates the scanning direction. Scale bar, 10 µm.

Fig. 6.
Fig. 6.

(AVI, 2.512 MB) User-interactive procedure for trapping different sizes of hollow glass spheres using doughnut optical traps.

Fig. 7.
Fig. 7.

(AVI, 1.113 MB) Image sequences of trapping and user-interactive sorting of an inhomogeneous mixture of soda lime hollow glass spheres and polystyrene beads in water solution. (a) The particles are first captured by appropriate trapping beams and then (b–c) displaced one by one. The size of the beam used at each trapping site is proportional to the size of the corresponding particle. Arrows indicate the directions at which particles are transported. (d) Two separate rows of optically trapped high-index (lower row) and low-index particles (upper row). Scale bar, 10 µm.

Fig. 8.
Fig. 8.

(AVI, 1.518 MB) Simultaneously transported high- and low-index particles confined in respective optical traps with pre-programmed dynamics. The time interval between adjacent frames is ~15 s. Scale bar, 10 µm.

Metrics