Abstract

We have developed a high-contrast, high-beam-quality Ti:sapphire amplifier producing pulses of 10 mJ in a single stage with 19% efficiency. The amplifier has a double-confocal multipass ring configuration that allows for a large mode volume by use of a collimated beam in the gain medium. We have designed the amplifier optics to correct for aberrations and for spatial gain narrowing. The compressed output beam has an M2 of 1.15. The use of an internal saturable absorber in the amplifier results in an intensity contrast of ~109. We anticipate this design will be useful to extend the multipass architecture to low-gain media and to still higher output energy.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. Backus, C. Durfee, M. M. Murnane, and H. C. Kapteyn, "High power ultrafast lasers," Rev. Sci. Instrum. 69, 1207-1223 (1998)
    [CrossRef]
  2. A. Rousse, C. Rishel, and J.-C. Gauthier, "Colloquium: Femtosecond x-ray crystallography," Reviews of Modern Physics 73, 17-31 (2001)
    [CrossRef]
  3. M. Roth, T. E. Cowan, C. Brown, M. Christl, W. Fountain, S. Hatchett, J. Johnson, M. H. Key, D. M. Pennington, M. D. Perry, T. W. Phillips, and T. C. Sangster, "Intense ion beams accelerated by petawatt-class lasers," Nuclear Instruments & Methods in Physics Research A 464, 201-205 (2000)
    [CrossRef]
  4. C. G. Durfee, S. Backus, M. M. Murnane, and H. C. Kapteyn, in Applications of High Field and Short wavelength Sources, ed. L. DiMauro, M. M. Murnane and A. l'Huillier (Plenum, New York, 1998), p. 71-78
  5. A. Rundquist, C. G. Durfee, Z. Chang, C. Herne, S. Backus, M. M. Murnane, and H. C. Kapteyn, "Phasematched generation of coherent soft x-rays," Science 280, 1412-1415 (1998)
    [CrossRef] [PubMed]
  6. S. Backus, J. Peatross, C. P. Huang, H. C. Kapteyn, and M. M. Murnane, "Ti:Sapphire Amplifier Producing Millijoule-Level, 21 fs Pulses at 1 kHz," Opt. Lett. 20, 2000-2002 (1995)
    [CrossRef] [PubMed]
  7. A. Sullivan, H. Hamster, H. C. Kapteyn, S. Gordon, W. White, H. Nathel, R. J. Blair, and R. W. Falcone, "Multi-Terawatt 100 Femtosecond Laser," Opt. Lett. 16, 1406-1408 (1991)
    [CrossRef] [PubMed]
  8. M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, "Generation of 11-fs pulses from a modelocked Ti:sapphire laser," Opt. Lett. 18, 977 (1993)
    [CrossRef] [PubMed]
  9. J. Zhou, C. P. Huang, C. Shi, M. M. Murnane, and H. C. Kapteyn, "Generation of 21-fs millijoule-energy pulses by use of Ti:sapphire," Opt. Lett. 19, 126-128 (1994)
    [CrossRef] [PubMed]
  10. J. Zhou, C. P. Huang, M. M. Murnane, and H. C. Kapteyn, "Amplification of 26 fs, 3TW pulses near the gain narrowing limit in Ti:sapphire," Opt. Lett. 20, 64-66 (1995)
    [CrossRef] [PubMed]
  11. C. Barty, G. Korn, F. Raksi, C. Rose-Petruck, J. Squier, A. Tian, K. Wilson, V. Yakovlev, and K. Yamakawa, "Regenerative pulse shaping and amplification of ultrabroadband optical pulses," Opt. Lett. 21, 219-221 (1996)
    [CrossRef] [PubMed]
  12. C. G. Durfee, S. Backus, M. M. Murnane, and H. C. Kapteyn, "Design and implementation of a TW-class kilohertz amplifier system," IEEE J. Sel. Top. Quantum Electron. 4, 395-406 (1998)
    [CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. G. Durfee, S. Backus, M. M. Murnane, and H. C. Kapteyn, "Design and implementation of a TW-class kilohertz amplifier system," IEEE J. Sel. Top. Quantum Electron. 4, 395-406 (1998)
[CrossRef]

Nuclear Instruments & Methods in Physics

M. Roth, T. E. Cowan, C. Brown, M. Christl, W. Fountain, S. Hatchett, J. Johnson, M. H. Key, D. M. Pennington, M. D. Perry, T. W. Phillips, and T. C. Sangster, "Intense ion beams accelerated by petawatt-class lasers," Nuclear Instruments & Methods in Physics Research A 464, 201-205 (2000)
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

S. Backus, C. Durfee, M. M. Murnane, and H. C. Kapteyn, "High power ultrafast lasers," Rev. Sci. Instrum. 69, 1207-1223 (1998)
[CrossRef]

Reviews of Modern Physics

A. Rousse, C. Rishel, and J.-C. Gauthier, "Colloquium: Femtosecond x-ray crystallography," Reviews of Modern Physics 73, 17-31 (2001)
[CrossRef]

Science

A. Rundquist, C. G. Durfee, Z. Chang, C. Herne, S. Backus, M. M. Murnane, and H. C. Kapteyn, "Phasematched generation of coherent soft x-rays," Science 280, 1412-1415 (1998)
[CrossRef] [PubMed]

Other

C. G. Durfee, S. Backus, M. M. Murnane, and H. C. Kapteyn, in Applications of High Field and Short wavelength Sources, ed. L. DiMauro, M. M. Murnane and A. l'Huillier (Plenum, New York, 1998), p. 71-78

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Amplifier layout. Optics in blue represent the basic four-mirror confocal configuration. The dashed reference line shows the position of the flat folding mirror in a 3-mirror multipass amplifier. Only 4 of 9 passes are shown here for clarity. As many as 12 passes fit on 2โ€ diameter mirrors. Curved spherical mirrors (CM1-CM4): f=250 mm, 2โ€ diameter. Ti:sapphire crystal (C): Brewster-cut 6-mm thick, 10-mm diameter. Optics in black are added for aberration correction and to allow a second set of passes. L1: f=3.5 m; L2 : f=3 m; L3,L4 : f=100 mm, diameter=1โ€. SA: Schott RG850 filter (2 mm). The circles show the layout of the passes of the first (closed) and second (open) set on the curved mirrors.

Fig. 2.
Fig. 2.

(a) Model of the evolution of the beam diameter in the amplifier in the presence of spatial gain narrowing. Thin line: unit round trip magnification; thick line: round trip magnification of 1.06. (b) Evolution of horizontal (solid) and vertical (dashed) beam divergence (inverse of wavefront radius) at the crystal in the amplifier. Thin line: without corrective lenses L3 and L4; thick: with correction.

Fig.e 3.
Fig.e 3.

(a) Cross-section of an image of the fluorescence from the crystal with the seed present (solid) and without the seed (dashed). (b) Diode traces of the ASE output without a short pulse seed, with (solid) and without (dashed) the saturable absorber. The origin of the time axis is set to the time that the amplified short pulse exits the amplifier.

Fig. 4.
Fig. 4.

(a) Retrieved frog trace (unamplified). (b) Unamplified (dashed) and amplified spectra (solid), retrieved spectral phase (red). (c) Amplified pulse shape (FWHM=35 fs).

Fig. 5.
Fig. 5.

Beam radius as a function of distance from the focus. There are several data points at each sampled distance. The solid line shows a fit to the data yielding an M2=1.15. The dashed line represents the ideal (M2=1) divergence from the measured focal spot.

Fig. 6.
Fig. 6.

(a) Image of amplified, uncompressed beam. (b) Lineout taken from the center of the image with best Gaussian fit. (c) Lineout of best focus with Gaussian fit.

Metrics