Abstract

We present the results of Z-scan studies carried out on fused silica at 1064nm and 532nm with two different nanosecond pulse durations. Such measurements in silica and in the nanosecond regime are possible thanks to a high sensitivity setting up of the Z-scan method and in-situ characterizations of the spatio-temporal parameters of the beam. Besides, with the use of a newly adapted numerical simulation only the calibration errors of the measurement devices are significant. In these conditions, we found a higher value of the nonlinear refractive index than in the femtosecond regime and we show that these values depend on pulse duration, which indicates the contribution of nanosecond mechanisms like electrostriction.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. N. Butcher and D. Cotter, The elements of nonlinear optics (Cambridge University Press, 1990).
    [CrossRef]
  2. R. Y. Chiao, E. Garmire and C. H. Townes, �??Self-trapping of optical beams,�?? Phys. Rev. Lett. 13, 479-482 (1964).
    [CrossRef]
  3. A. Feldman, D. Horowitz and R. M.Waxler, �??Mechanisms for self-focusing in optical glasses,�?? IEEE J. Quantum Electron. QE-9, 1054-1061 (November 1973).
    [CrossRef]
  4. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan and E. W. Van Stryland, �??Sensitive measurement of optical nonlinearities using a single beam,�?? IEEE J. Quantum Electron. 26, 4, 760-769 (April 1990).
    [CrossRef]
  5. N. L. Boling, A. J. Glass and A. Owyoung, �??Empirical relationships for predicting nonlinear refractive index changes in optical solids,�?? IEEE J. Quantum Electron. QE-14, 601-608, 1978.
    [CrossRef]
  6. L. Gallais, J.Y. Natoli and C. Amra, �??Statistical study of single and multiple pulse laser-induced damage in glasses,�?? Opt. Express 10, 1465-1474 (2002), <a href="http://www.opticsexpress.org">http://www.opticsexpress.org</a>
    [CrossRef] [PubMed]
  7. T. Olivier, F. Billard and H. Akhouayri, �??Z-scan theoretical and experimental studies for accurate measurements of nonlinear refractive index and absorption of optical glasses near damage threshold,�?? presented at the 35th Laser Damage Symposium, Boulder, United-States, Sept 2003.
  8. B. K. Rhee, J. S. Byun and E. W. Van Stryland, �??Z-scan using circularly symmetric beams,�?? J. Opt. Soc. Am. B 13, 2720-2723 (December 1996).
    [CrossRef]
  9. M. D. Feit and J. A. Fleck, �??Beam nonparaxiality, filament formation, and beam breakup in the self-focusing of optical beams,�?? J. Opt. Soc. Am. B 5, 3, 633-640 (March 1988).
    [CrossRef]
  10. A. J. S. Hamilton, �??Uncorrelated modes of the nonlinear power spectrum,�?? Mon. Not. R. Astron. Soc. 312, 257, (2000).
    [CrossRef]
  11. D. Milam and M. J. Weber, �??Measurement of nonlinear refractive-index coefficients using time-resolved interferometry: Application to optical materials for high-power neodynium lasers,�?? J. Appl. Phys. 47, 6, 2497-2501 (June 1976).
    [CrossRef]
  12. W. T. White III, W. L Smith and D. Milam, �??Direct measurement of the nonlinear refractive-index coefficient gamma at 355 nm in fused silica and BK-10 glass,�?? Opt. Lett. 9, 11, 10-12 (January 1984).
    [CrossRef]

IEEE J. Quantum Electron. (3)

A. Feldman, D. Horowitz and R. M.Waxler, �??Mechanisms for self-focusing in optical glasses,�?? IEEE J. Quantum Electron. QE-9, 1054-1061 (November 1973).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan and E. W. Van Stryland, �??Sensitive measurement of optical nonlinearities using a single beam,�?? IEEE J. Quantum Electron. 26, 4, 760-769 (April 1990).
[CrossRef]

N. L. Boling, A. J. Glass and A. Owyoung, �??Empirical relationships for predicting nonlinear refractive index changes in optical solids,�?? IEEE J. Quantum Electron. QE-14, 601-608, 1978.
[CrossRef]

J. Appl. Phys. (1)

D. Milam and M. J. Weber, �??Measurement of nonlinear refractive-index coefficients using time-resolved interferometry: Application to optical materials for high-power neodynium lasers,�?? J. Appl. Phys. 47, 6, 2497-2501 (June 1976).
[CrossRef]

J. Opt. Soc. Am. B (2)

Mon. Not. R. Astron. Soc. (1)

A. J. S. Hamilton, �??Uncorrelated modes of the nonlinear power spectrum,�?? Mon. Not. R. Astron. Soc. 312, 257, (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

R. Y. Chiao, E. Garmire and C. H. Townes, �??Self-trapping of optical beams,�?? Phys. Rev. Lett. 13, 479-482 (1964).
[CrossRef]

Other (2)

P. N. Butcher and D. Cotter, The elements of nonlinear optics (Cambridge University Press, 1990).
[CrossRef]

T. Olivier, F. Billard and H. Akhouayri, �??Z-scan theoretical and experimental studies for accurate measurements of nonlinear refractive index and absorption of optical glasses near damage threshold,�?? presented at the 35th Laser Damage Symposium, Boulder, United-States, Sept 2003.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup. IRF: infrared filter, λ/2: half-wave plate, P: Glan-Thompson polarizer, 2ω: KTP crystal and half-wave plate, A1, A2: apertures, W1, W2, W3: wedges, RL, SL: reference and signal lenses, RP, SP: reference and signal photodiodes, RM: removable mirror for beam spatial characterization, TS: translation stage.

Fig. 2.
Fig. 2.

(Left) 2D-beam profile at the waist position at 1064nm. (Right) evolution of the on-axis intensity at 1064nm. The different curves represent simulations (solid lines), measurement (diamonds) and for comparison the case of a Gaussian beam having the same effective area Ae at the waist position (dashed lines).

Fig. 3.
Fig. 3.

Example of the normalized temporal profile p(t) (normalized output power), measured with a fast photodiode at 1064nm.

Fig. 4.
Fig. 4.

Normalized transmittance curves obtained on a 5mm-thick sample of fused silica at 1064nm (left) and at 532nm (right). The dots represent the experimental results and the solid lines represent the simulations.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n = n 0 + γ I
T ( z , t ) = 1 + Δ n ( t ) F ( z )
T ( z ) = 1 + γ E 2 π τ e A e × F ( z )
1 2 π τ e = p 2 ( t ) d t ( p ( t ) d t ) 2

Metrics