Abstract

Two-dimensional (2D) optical wavelength demultiplexing is demonstrated by employing multilevel arrayed waveguides as a 2D diffraction grating, named the 2D arrayed waveguide grating (2D-AWG). Since the monochromatic lightwave is diffracted by the 2D-AWG to a series of periodic spots with 2D diffraction orders in both x and y directions while the dispersion direction is never parallel to the x or y direction, we can obtain 2D wavelength demultiplexing exploiting diffraction orders of either the x or y direction. One of the two dispersion components is designed much larger than the other, and the correspondent spatial free spectral range component is set properly to ensure high diffraction efficiency. The input and output ports can also be designed based on the multilevel lightwave circuit (MLC), and their level planes can be tuned parallel to that of the MLC-based 2D-AWG, which makes it feasible to integrate the 2D-AWG with the input port and/or the output port. It provides a promising way to realize large-scale and high-density optical multiplexers/demultiplexers.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Laude and K. Lange, �??�??Dense wavelength division multiplexer and routers using diffraction grating,�??�?? in Proceedings of 1999 National Fiber Optic Engineers Conference (Telcordia Technologies, Piscataway, New Jersey, 1999), 1, pp.83-86
  2. X. Deng, J. Yang, J. Zou, and R. T. Chen, "Design of hybrid free-space wavelength-division multiplexers for integration," in WDM and Photonic Switching Devices for Network Applications III, Proc. SPIE 4653, paper 25, 153-160 (2002)
  3. C. Cremer, G. Ebbinghaus, G. Heise, R. Muller-Nawrath, M. Schienle, and L. Stoll. �??Grating spectrograph in InGaAs/InP for dense wavelength division multiplexing�?? Appl. Phys. Lett. 59, 627-629 (1991)
    [CrossRef]
  4. J. He, B. Lamontagne, A. Delage, L. Erickson, M. Davies, E. Kotels, �??Monolithic integrated wavelength demultiplexer based on a waveguide Rowland circle grating in InGaAsP/InP,�?? J. Lightwave Technol. 16, 631-638 (1998)
    [CrossRef]
  5. M. Smit, �??New focusing and dispersive planar component based on an optical phased array,�?? Electron. Lett. 24, 385-386 (1988)
    [CrossRef]
  6. M. Smit, C. van Dam, �??Phasar-based WDM-devices: principles, design and applications�?? IEEE J. Sel. Top. Quantum Electron. 2, 236-250 (1996)
    [CrossRef]
  7. Y. Hibino, �??Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,�?? IEEE J. Sel. Top. Quantum Electron. 8, 1090-1101 (2002)
    [CrossRef]
  8. Y. Hida, Y. Hibino, T. Kitoh, Y. Inoue, M. Itoh, T. Shibata, and A. Himeno, "400-channel 25-GHz spacing arrayed-waveguide grating covering a full range of C- and L-bands," in OSA Trends in Optics and Photonics (TOPS) Vol. 54, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2001), 3, pp. WB2-1 �?? WB2-3
  9. K. Takada, M. Abe, T. Shibata, K. Okamoto, �??10-GHz-spaced 1010-channel tandem AWG filter consisting of one primary and ten secondary AWGs,�?? IEEE Photon. Technol. Lett. 13, 577 �??578 (2001)
    [CrossRef]
  10. C. Wachter, Th. Hennig, Th. Bauer, A. Brauer, W. Karthe, �??Integrated optics toward third dimension,�?? in Integrated Optic Devices II, G. Righini, S. Iraj Najafi, and B. Jalali, eds., Proc. SPIE 3278, 102�??111 (1998)
  11. S. Nolte, M. Will, J. Burghoff, A. Tuennermann, �??Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,�?? Appl. Phys. A - Mater. 77, 109-111 (2003)
    [CrossRef]
  12. Y. Sun, X. Jiang, J. Yang, Y. Tang, M. Wang, �??Experimental demonstration of 2-D MMI optical power splitter,�?? Chinese Phys. Lett. 20, 2182-2184 (2003)
    [CrossRef]

Appl. Phys. A - Mater.

S. Nolte, M. Will, J. Burghoff, A. Tuennermann, �??Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,�?? Appl. Phys. A - Mater. 77, 109-111 (2003)
[CrossRef]

Appl. Phys. Lett.

C. Cremer, G. Ebbinghaus, G. Heise, R. Muller-Nawrath, M. Schienle, and L. Stoll. �??Grating spectrograph in InGaAs/InP for dense wavelength division multiplexing�?? Appl. Phys. Lett. 59, 627-629 (1991)
[CrossRef]

Chinese Phys. Lett.

Y. Sun, X. Jiang, J. Yang, Y. Tang, M. Wang, �??Experimental demonstration of 2-D MMI optical power splitter,�?? Chinese Phys. Lett. 20, 2182-2184 (2003)
[CrossRef]

Electron. Lett.

M. Smit, �??New focusing and dispersive planar component based on an optical phased array,�?? Electron. Lett. 24, 385-386 (1988)
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Smit, C. van Dam, �??Phasar-based WDM-devices: principles, design and applications�?? IEEE J. Sel. Top. Quantum Electron. 2, 236-250 (1996)
[CrossRef]

Y. Hibino, �??Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,�?? IEEE J. Sel. Top. Quantum Electron. 8, 1090-1101 (2002)
[CrossRef]

IEEE Photon. Technol. Lett.

K. Takada, M. Abe, T. Shibata, K. Okamoto, �??10-GHz-spaced 1010-channel tandem AWG filter consisting of one primary and ten secondary AWGs,�?? IEEE Photon. Technol. Lett. 13, 577 �??578 (2001)
[CrossRef]

J. Lightwave Technol.

OSA TOPS Series, OFC 2001

Y. Hida, Y. Hibino, T. Kitoh, Y. Inoue, M. Itoh, T. Shibata, and A. Himeno, "400-channel 25-GHz spacing arrayed-waveguide grating covering a full range of C- and L-bands," in OSA Trends in Optics and Photonics (TOPS) Vol. 54, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2001), 3, pp. WB2-1 �?? WB2-3

Proc. 1999 Natl. Fiber Optic Engin. Conf

J. Laude and K. Lange, �??�??Dense wavelength division multiplexer and routers using diffraction grating,�??�?? in Proceedings of 1999 National Fiber Optic Engineers Conference (Telcordia Technologies, Piscataway, New Jersey, 1999), 1, pp.83-86

Proc. SPIE

X. Deng, J. Yang, J. Zou, and R. T. Chen, "Design of hybrid free-space wavelength-division multiplexers for integration," in WDM and Photonic Switching Devices for Network Applications III, Proc. SPIE 4653, paper 25, 153-160 (2002)

C. Wachter, Th. Hennig, Th. Bauer, A. Brauer, W. Karthe, �??Integrated optics toward third dimension,�?? in Integrated Optic Devices II, G. Righini, S. Iraj Najafi, and B. Jalali, eds., Proc. SPIE 3278, 102�??111 (1998)

Supplementary Material (2)

» Media 1: GIF (146 KB)     
» Media 2: GIF (94 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic diagrams of the 2D-AWG-based optical system for 2D wavelength multiplexing/demultiplexing, (b) 2D-AWG, and (c) waveguide layout of a waveguide level.

Fig. 2.
Fig. 2.

Two-dimensional diffraction pattern of the light at a certain frequency.

Fig. 3.
Fig. 3.

Output scheme for two-dimensional wavelength demultiplexing.

Fig. 4.
Fig. 4.

(146k) Simulation result of 10×10 channels two-dimensional wavelength demultiplexing.

Fig. 5.
Fig. 5.

(95k) Simulation result of the two-dimensional output scheme for MLC-based integration.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

L ij = L 0 + ( l 1 ) Δ L x + ( k 1 ) Δ L y ( l = 1 , 2 , , N x , k = 1 , 2 , , N y )
f o ( x , y , υ ) = G ( x , y ) exp ( j 2 π L 0 n eff c υ ) l = 1 N x k = 1 N y C lk exp [ j 2 π υ c ( l Δ L x n eff + k Δ L y n eff x x l + y y k L f ) ]
D υ = dr d υ = ( D υ x 2 + D υ y 2 ) 1 2
tan θ = D υ y D υ x Δ L y d x Δ L x d y
tan φ = D υ y N u Δ υ D υ x ( FSR υ x N u Δ υ )
d u = D υ x Δ υ cos θ
d v = D υ y N u Δ υ sin φ
{ x i , j = x 1 , 1 + D υ x ( i 1 ) Δ υ D υ x ( j 1 ) ( FSR υ x N u Δ υ ) y i , j = y 1 , 1 + D υ y ( i 1 ) Δ υ + D υ y ( j 1 ) N u Δ υ

Metrics