Abstract

Two-dimensional (2D) optical wavelength demultiplexing is demonstrated by employing multilevel arrayed waveguides as a 2D diffraction grating, named the 2D arrayed waveguide grating (2D-AWG). Since the monochromatic lightwave is diffracted by the 2D-AWG to a series of periodic spots with 2D diffraction orders in both x and y directions while the dispersion direction is never parallel to the x or y direction, we can obtain 2D wavelength demultiplexing exploiting diffraction orders of either the x or y direction. One of the two dispersion components is designed much larger than the other, and the correspondent spatial free spectral range component is set properly to ensure high diffraction efficiency. The input and output ports can also be designed based on the multilevel lightwave circuit (MLC), and their level planes can be tuned parallel to that of the MLC-based 2D-AWG, which makes it feasible to integrate the 2D-AWG with the input port and/or the output port. It provides a promising way to realize large-scale and high-density optical multiplexers/demultiplexers.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Laude and K. Lange, “Dense wavelength division multiplexer and routers using diffraction grating,” in Proceedings of 1999 National Fiber Optic Engineers Conference (Telcordia Technologies, Piscataway, New Jersey, 1999), 1, pp.83–86
  2. X. Deng, J. Yang, J. Zou, and R. T. Chen, “Design of hybrid free-space wavelength-division multiplexers for integration,” in WDM and Photonic Switching Devices for Network Applications III, Proc. SPIE4653, paer25, 153–160 (2002)
  3. C. Cremer, G. Ebbinghaus, G. Heise, R. Muller-Nawrath, M. Schienle, and L. Stoll. “Grating spectrograph in InGaAs/InP for dense wavelength division multiplexing” Appl. Phys. Lett. 59, 627–629 (1991)
    [Crossref]
  4. J. He, B. Lamontagne, A. Delage, L. Erickson, M. Davies, and E. Kotels, “Monolithic integrated wavelength demultiplexer based on a waveguide Rowland circle grating in InGaAsP/InP,” J. Lightwave Technol. 16, 631–638 (1998)
    [Crossref]
  5. M. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386 (1988)
    [Crossref]
  6. M. Smit and C. van Dam, “Phasar-based WDM-devices: principles, design and applications” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996)
    [Crossref]
  7. Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Top. Quantum Electron. 8, 1090–1101 (2002)
    [Crossref]
  8. Y. Hida, Y. Hibino, T. Kitoh, Y. Inoue, M. Itoh, T. Shibata, and A. Himeno, “400-channel 25-GHz spacing arrayed-waveguide grating covering a full range of C- and L-bands,” in OSA Trends in Optics and Photonics (TOPS) Vol. 54, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2001), 3, pp. WB2-1–WB2-3
  9. K. Takada, M. Abe, T. Shibata, and K. Okamoto, “10-GHz-spaced 1010-channel tandem AWG filter consisting of one primary and ten secondary AWGs,” IEEE Photon. Technol. Lett. 13, 577–578 (2001)
    [Crossref]
  10. C. Wachter, Th. Hennig, Th. Bauer, A. Brauer, and W. Karthe, “Integrated optics toward third dimension,” in Integrated Optic Devices II, G. Righini, S. Iraj Najafi, and B. Jalali, eds., Proc. SPIE3278, 102–111 (1998)
  11. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A-Mater. 77, 109–111 (2003)
    [Crossref]
  12. Y. Sun, X. Jiang, J. Yang, Y. Tang, and M. Wang, “Experimental demonstration of 2-D MMI optical power splitter,” Chinese Phys. Lett. 20, 2182–2184 (2003)
    [Crossref]

2003 (2)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A-Mater. 77, 109–111 (2003)
[Crossref]

Y. Sun, X. Jiang, J. Yang, Y. Tang, and M. Wang, “Experimental demonstration of 2-D MMI optical power splitter,” Chinese Phys. Lett. 20, 2182–2184 (2003)
[Crossref]

2002 (1)

Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Top. Quantum Electron. 8, 1090–1101 (2002)
[Crossref]

2001 (1)

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “10-GHz-spaced 1010-channel tandem AWG filter consisting of one primary and ten secondary AWGs,” IEEE Photon. Technol. Lett. 13, 577–578 (2001)
[Crossref]

1998 (1)

1996 (1)

M. Smit and C. van Dam, “Phasar-based WDM-devices: principles, design and applications” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996)
[Crossref]

1991 (1)

C. Cremer, G. Ebbinghaus, G. Heise, R. Muller-Nawrath, M. Schienle, and L. Stoll. “Grating spectrograph in InGaAs/InP for dense wavelength division multiplexing” Appl. Phys. Lett. 59, 627–629 (1991)
[Crossref]

1988 (1)

M. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386 (1988)
[Crossref]

Abe, M.

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “10-GHz-spaced 1010-channel tandem AWG filter consisting of one primary and ten secondary AWGs,” IEEE Photon. Technol. Lett. 13, 577–578 (2001)
[Crossref]

Bauer, Th.

C. Wachter, Th. Hennig, Th. Bauer, A. Brauer, and W. Karthe, “Integrated optics toward third dimension,” in Integrated Optic Devices II, G. Righini, S. Iraj Najafi, and B. Jalali, eds., Proc. SPIE3278, 102–111 (1998)

Brauer, A.

C. Wachter, Th. Hennig, Th. Bauer, A. Brauer, and W. Karthe, “Integrated optics toward third dimension,” in Integrated Optic Devices II, G. Righini, S. Iraj Najafi, and B. Jalali, eds., Proc. SPIE3278, 102–111 (1998)

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A-Mater. 77, 109–111 (2003)
[Crossref]

Chen, R. T.

X. Deng, J. Yang, J. Zou, and R. T. Chen, “Design of hybrid free-space wavelength-division multiplexers for integration,” in WDM and Photonic Switching Devices for Network Applications III, Proc. SPIE4653, paer25, 153–160 (2002)

Cremer, C.

C. Cremer, G. Ebbinghaus, G. Heise, R. Muller-Nawrath, M. Schienle, and L. Stoll. “Grating spectrograph in InGaAs/InP for dense wavelength division multiplexing” Appl. Phys. Lett. 59, 627–629 (1991)
[Crossref]

Davies, M.

Delage, A.

Deng, X.

X. Deng, J. Yang, J. Zou, and R. T. Chen, “Design of hybrid free-space wavelength-division multiplexers for integration,” in WDM and Photonic Switching Devices for Network Applications III, Proc. SPIE4653, paer25, 153–160 (2002)

Ebbinghaus, G.

C. Cremer, G. Ebbinghaus, G. Heise, R. Muller-Nawrath, M. Schienle, and L. Stoll. “Grating spectrograph in InGaAs/InP for dense wavelength division multiplexing” Appl. Phys. Lett. 59, 627–629 (1991)
[Crossref]

Erickson, L.

He, J.

Heise, G.

C. Cremer, G. Ebbinghaus, G. Heise, R. Muller-Nawrath, M. Schienle, and L. Stoll. “Grating spectrograph in InGaAs/InP for dense wavelength division multiplexing” Appl. Phys. Lett. 59, 627–629 (1991)
[Crossref]

Hennig, Th.

C. Wachter, Th. Hennig, Th. Bauer, A. Brauer, and W. Karthe, “Integrated optics toward third dimension,” in Integrated Optic Devices II, G. Righini, S. Iraj Najafi, and B. Jalali, eds., Proc. SPIE3278, 102–111 (1998)

Hibino, Y.

Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Top. Quantum Electron. 8, 1090–1101 (2002)
[Crossref]

Y. Hida, Y. Hibino, T. Kitoh, Y. Inoue, M. Itoh, T. Shibata, and A. Himeno, “400-channel 25-GHz spacing arrayed-waveguide grating covering a full range of C- and L-bands,” in OSA Trends in Optics and Photonics (TOPS) Vol. 54, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2001), 3, pp. WB2-1–WB2-3

Hida, Y.

Y. Hida, Y. Hibino, T. Kitoh, Y. Inoue, M. Itoh, T. Shibata, and A. Himeno, “400-channel 25-GHz spacing arrayed-waveguide grating covering a full range of C- and L-bands,” in OSA Trends in Optics and Photonics (TOPS) Vol. 54, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2001), 3, pp. WB2-1–WB2-3

Himeno, A.

Y. Hida, Y. Hibino, T. Kitoh, Y. Inoue, M. Itoh, T. Shibata, and A. Himeno, “400-channel 25-GHz spacing arrayed-waveguide grating covering a full range of C- and L-bands,” in OSA Trends in Optics and Photonics (TOPS) Vol. 54, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2001), 3, pp. WB2-1–WB2-3

Inoue, Y.

Y. Hida, Y. Hibino, T. Kitoh, Y. Inoue, M. Itoh, T. Shibata, and A. Himeno, “400-channel 25-GHz spacing arrayed-waveguide grating covering a full range of C- and L-bands,” in OSA Trends in Optics and Photonics (TOPS) Vol. 54, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2001), 3, pp. WB2-1–WB2-3

Itoh, M.

Y. Hida, Y. Hibino, T. Kitoh, Y. Inoue, M. Itoh, T. Shibata, and A. Himeno, “400-channel 25-GHz spacing arrayed-waveguide grating covering a full range of C- and L-bands,” in OSA Trends in Optics and Photonics (TOPS) Vol. 54, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2001), 3, pp. WB2-1–WB2-3

Jiang, X.

Y. Sun, X. Jiang, J. Yang, Y. Tang, and M. Wang, “Experimental demonstration of 2-D MMI optical power splitter,” Chinese Phys. Lett. 20, 2182–2184 (2003)
[Crossref]

Karthe, W.

C. Wachter, Th. Hennig, Th. Bauer, A. Brauer, and W. Karthe, “Integrated optics toward third dimension,” in Integrated Optic Devices II, G. Righini, S. Iraj Najafi, and B. Jalali, eds., Proc. SPIE3278, 102–111 (1998)

Kitoh, T.

Y. Hida, Y. Hibino, T. Kitoh, Y. Inoue, M. Itoh, T. Shibata, and A. Himeno, “400-channel 25-GHz spacing arrayed-waveguide grating covering a full range of C- and L-bands,” in OSA Trends in Optics and Photonics (TOPS) Vol. 54, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2001), 3, pp. WB2-1–WB2-3

Kotels, E.

Lamontagne, B.

Lange, K.

J. Laude and K. Lange, “Dense wavelength division multiplexer and routers using diffraction grating,” in Proceedings of 1999 National Fiber Optic Engineers Conference (Telcordia Technologies, Piscataway, New Jersey, 1999), 1, pp.83–86

Laude, J.

J. Laude and K. Lange, “Dense wavelength division multiplexer and routers using diffraction grating,” in Proceedings of 1999 National Fiber Optic Engineers Conference (Telcordia Technologies, Piscataway, New Jersey, 1999), 1, pp.83–86

Muller-Nawrath, R.

C. Cremer, G. Ebbinghaus, G. Heise, R. Muller-Nawrath, M. Schienle, and L. Stoll. “Grating spectrograph in InGaAs/InP for dense wavelength division multiplexing” Appl. Phys. Lett. 59, 627–629 (1991)
[Crossref]

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A-Mater. 77, 109–111 (2003)
[Crossref]

Okamoto, K.

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “10-GHz-spaced 1010-channel tandem AWG filter consisting of one primary and ten secondary AWGs,” IEEE Photon. Technol. Lett. 13, 577–578 (2001)
[Crossref]

Schienle, M.

C. Cremer, G. Ebbinghaus, G. Heise, R. Muller-Nawrath, M. Schienle, and L. Stoll. “Grating spectrograph in InGaAs/InP for dense wavelength division multiplexing” Appl. Phys. Lett. 59, 627–629 (1991)
[Crossref]

Shibata, T.

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “10-GHz-spaced 1010-channel tandem AWG filter consisting of one primary and ten secondary AWGs,” IEEE Photon. Technol. Lett. 13, 577–578 (2001)
[Crossref]

Y. Hida, Y. Hibino, T. Kitoh, Y. Inoue, M. Itoh, T. Shibata, and A. Himeno, “400-channel 25-GHz spacing arrayed-waveguide grating covering a full range of C- and L-bands,” in OSA Trends in Optics and Photonics (TOPS) Vol. 54, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2001), 3, pp. WB2-1–WB2-3

Smit, M.

M. Smit and C. van Dam, “Phasar-based WDM-devices: principles, design and applications” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996)
[Crossref]

M. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386 (1988)
[Crossref]

Stoll, L.

C. Cremer, G. Ebbinghaus, G. Heise, R. Muller-Nawrath, M. Schienle, and L. Stoll. “Grating spectrograph in InGaAs/InP for dense wavelength division multiplexing” Appl. Phys. Lett. 59, 627–629 (1991)
[Crossref]

Sun, Y.

Y. Sun, X. Jiang, J. Yang, Y. Tang, and M. Wang, “Experimental demonstration of 2-D MMI optical power splitter,” Chinese Phys. Lett. 20, 2182–2184 (2003)
[Crossref]

Takada, K.

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “10-GHz-spaced 1010-channel tandem AWG filter consisting of one primary and ten secondary AWGs,” IEEE Photon. Technol. Lett. 13, 577–578 (2001)
[Crossref]

Tang, Y.

Y. Sun, X. Jiang, J. Yang, Y. Tang, and M. Wang, “Experimental demonstration of 2-D MMI optical power splitter,” Chinese Phys. Lett. 20, 2182–2184 (2003)
[Crossref]

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A-Mater. 77, 109–111 (2003)
[Crossref]

van Dam, C.

M. Smit and C. van Dam, “Phasar-based WDM-devices: principles, design and applications” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996)
[Crossref]

Wachter, C.

C. Wachter, Th. Hennig, Th. Bauer, A. Brauer, and W. Karthe, “Integrated optics toward third dimension,” in Integrated Optic Devices II, G. Righini, S. Iraj Najafi, and B. Jalali, eds., Proc. SPIE3278, 102–111 (1998)

Wang, M.

Y. Sun, X. Jiang, J. Yang, Y. Tang, and M. Wang, “Experimental demonstration of 2-D MMI optical power splitter,” Chinese Phys. Lett. 20, 2182–2184 (2003)
[Crossref]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A-Mater. 77, 109–111 (2003)
[Crossref]

Yang, J.

Y. Sun, X. Jiang, J. Yang, Y. Tang, and M. Wang, “Experimental demonstration of 2-D MMI optical power splitter,” Chinese Phys. Lett. 20, 2182–2184 (2003)
[Crossref]

X. Deng, J. Yang, J. Zou, and R. T. Chen, “Design of hybrid free-space wavelength-division multiplexers for integration,” in WDM and Photonic Switching Devices for Network Applications III, Proc. SPIE4653, paer25, 153–160 (2002)

Zou, J.

X. Deng, J. Yang, J. Zou, and R. T. Chen, “Design of hybrid free-space wavelength-division multiplexers for integration,” in WDM and Photonic Switching Devices for Network Applications III, Proc. SPIE4653, paer25, 153–160 (2002)

Appl. Phys. A-Mater. (1)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A-Mater. 77, 109–111 (2003)
[Crossref]

Appl. Phys. Lett. (1)

C. Cremer, G. Ebbinghaus, G. Heise, R. Muller-Nawrath, M. Schienle, and L. Stoll. “Grating spectrograph in InGaAs/InP for dense wavelength division multiplexing” Appl. Phys. Lett. 59, 627–629 (1991)
[Crossref]

Chinese Phys. Lett. (1)

Y. Sun, X. Jiang, J. Yang, Y. Tang, and M. Wang, “Experimental demonstration of 2-D MMI optical power splitter,” Chinese Phys. Lett. 20, 2182–2184 (2003)
[Crossref]

Electron. Lett. (1)

M. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386 (1988)
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Smit and C. van Dam, “Phasar-based WDM-devices: principles, design and applications” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996)
[Crossref]

Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Top. Quantum Electron. 8, 1090–1101 (2002)
[Crossref]

IEEE Photon. Technol. Lett. (1)

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “10-GHz-spaced 1010-channel tandem AWG filter consisting of one primary and ten secondary AWGs,” IEEE Photon. Technol. Lett. 13, 577–578 (2001)
[Crossref]

J. Lightwave Technol. (1)

Other (4)

J. Laude and K. Lange, “Dense wavelength division multiplexer and routers using diffraction grating,” in Proceedings of 1999 National Fiber Optic Engineers Conference (Telcordia Technologies, Piscataway, New Jersey, 1999), 1, pp.83–86

X. Deng, J. Yang, J. Zou, and R. T. Chen, “Design of hybrid free-space wavelength-division multiplexers for integration,” in WDM and Photonic Switching Devices for Network Applications III, Proc. SPIE4653, paer25, 153–160 (2002)

Y. Hida, Y. Hibino, T. Kitoh, Y. Inoue, M. Itoh, T. Shibata, and A. Himeno, “400-channel 25-GHz spacing arrayed-waveguide grating covering a full range of C- and L-bands,” in OSA Trends in Optics and Photonics (TOPS) Vol. 54, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2001), 3, pp. WB2-1–WB2-3

C. Wachter, Th. Hennig, Th. Bauer, A. Brauer, and W. Karthe, “Integrated optics toward third dimension,” in Integrated Optic Devices II, G. Righini, S. Iraj Najafi, and B. Jalali, eds., Proc. SPIE3278, 102–111 (1998)

Supplementary Material (2)

» Media 1: GIF (146 KB)     
» Media 2: GIF (94 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic diagrams of the 2D-AWG-based optical system for 2D wavelength multiplexing/demultiplexing, (b) 2D-AWG, and (c) waveguide layout of a waveguide level.

Fig. 2.
Fig. 2.

Two-dimensional diffraction pattern of the light at a certain frequency.

Fig. 3.
Fig. 3.

Output scheme for two-dimensional wavelength demultiplexing.

Fig. 4.
Fig. 4.

(146k) Simulation result of 10×10 channels two-dimensional wavelength demultiplexing.

Fig. 5.
Fig. 5.

(95k) Simulation result of the two-dimensional output scheme for MLC-based integration.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

L ij = L 0 + ( l 1 ) Δ L x + ( k 1 ) Δ L y ( l = 1 , 2 , , N x , k = 1 , 2 , , N y )
f o ( x , y , υ ) = G ( x , y ) exp ( j 2 π L 0 n eff c υ ) l = 1 N x k = 1 N y C lk exp [ j 2 π υ c ( l Δ L x n eff + k Δ L y n eff x x l + y y k L f ) ]
D υ = dr d υ = ( D υ x 2 + D υ y 2 ) 1 2
tan θ = D υ y D υ x Δ L y d x Δ L x d y
tan φ = D υ y N u Δ υ D υ x ( FSR υ x N u Δ υ )
d u = D υ x Δ υ cos θ
d v = D υ y N u Δ υ sin φ
{ x i , j = x 1 , 1 + D υ x ( i 1 ) Δ υ D υ x ( j 1 ) ( FSR υ x N u Δ υ ) y i , j = y 1 , 1 + D υ y ( i 1 ) Δ υ + D υ y ( j 1 ) N u Δ υ

Metrics