Abstract

We report on a polarization maintaining large mode area photonic crystal fiber. Unlike, previous work on polarization maintaining photonic crystal fibers, birefringence is introduced using stress applying parts. This has allowed us to realize fibers, which are both single mode at any wavelength and have a practically constant birefringence for any wavelength. The fibers presented in this work have mode field diameters from about 4 to 6.5 micron, and exhibit a typical birefringence of 1.5·10-4.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T.A. Birks, J.C. Knight, and P.S.J. Russell, ???Endlessly single-mode photonic crystal fiber,??? Opt. Lett. 22, 961- 963 (1997)
    [CrossRef] [PubMed]
  2. J.C. Knight, ???Photonic crystal fibres,??? Nature 424, 847-851 (2003)
    [CrossRef] [PubMed]
  3. A. Ortigosa-Blanch, J.C. Knight, W.J. Wadsworth, J. Arriaga, B.J. Mangan, T.A. Birks, and P.S.J. Russell, ???Highly birefringent photonic crystal fibers,??? Opt. Lett. 25, 1325-1327 (2000)
    [CrossRef]
  4. T.P. Hansen, J. Broeng, S.E.B. Libori, E. Knudsen, A. Bjarklev, J.R. Jensen, and H. Simonsen, ???Highly birefringent index-guiding photonic crystal fibers???, IEEE. Phot. Technol. Lett. 13, 588-590 (2001)
    [CrossRef]
  5. M.D. Nielsen, J.R. Folkenberg, N.A. Mortensen, and A. Bjarklev, ???Bandwidth comparison of photonic crystal fibers and conventional single-mode fibers,??? Opt. Express 12, 430-435 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-430">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-430</a>
    [CrossRef] [PubMed]
  6. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, ???Optical properties of a low-loss polarizationmaintaining photonic crystal fiber,??? Opt. Express 9, 676-680 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-676">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-676</a>
    [CrossRef] [PubMed]
  7. J. Noda, K. Okamoto, and Y. Sasaki, ???Polarization-Maintaining Fibers and Their Applications,??? J. Lightwave Technol. LT-4, 1071-1088 (1986)
    [CrossRef]
  8. T.P. White, R.C. McPhedran, C.M. de Sterke, L.C. Botten, and M.J. Steel, ???Confinement losses in microstructured optical fibers,??? Opt. Lett. 26, 1660-1662 (2001)
    [CrossRef]
  9. C.D. Poole and D.L. Favin, ???Polarization-Mode Dispersion Measurements Based on Transmission Spectra Through a Polarizer,??? J. Lightwave Technol. 12, 917-929 (1994)
    [CrossRef]
  10. M.J. Steel, T.P. White, C.M. de Sterke, R.C. McPhedran, and L.C. Botton, ???Symmetry and degeneracy in microstructured optical fibers,??? Opt. Lett. 26, 488-490 (2001)
    [CrossRef]
  11. L.N.G. Filon, ???On the variation with the wave-length of the double refraction in strained glass,??? Proceedings of the Cambridge Philosophical Society XI, 478-492 (1902)
  12. L.N.G. Filon, ???On the variation with the wave-length of the double refraction in strained glass,??? Proceedings of the Cambridge Philosophical Society XII, 313-337 (1904).
  13. Z. Zhu and T.G. Brown, ???Stress-induced birefringence in microstructured optical fibers,??? Opt. Lett. 28, 2306- 2308 (2003)
    [CrossRef] [PubMed]
  14. N.A. Mortensen, M.D. Nielsen, J.R. Folkenberg, A. Petersson, and H.R. Simonsen, ???Improved large-mode area endlessly single-mode photonic crystal fibers,??? Opt. Lett. 28, 393-395 (2003)
    [CrossRef] [PubMed]

IEEE. Phot. Technol. Lett.

T.P. Hansen, J. Broeng, S.E.B. Libori, E. Knudsen, A. Bjarklev, J.R. Jensen, and H. Simonsen, ???Highly birefringent index-guiding photonic crystal fibers???, IEEE. Phot. Technol. Lett. 13, 588-590 (2001)
[CrossRef]

J. Lightwave Technol.

J. Noda, K. Okamoto, and Y. Sasaki, ???Polarization-Maintaining Fibers and Their Applications,??? J. Lightwave Technol. LT-4, 1071-1088 (1986)
[CrossRef]

C.D. Poole and D.L. Favin, ???Polarization-Mode Dispersion Measurements Based on Transmission Spectra Through a Polarizer,??? J. Lightwave Technol. 12, 917-929 (1994)
[CrossRef]

Nature

J.C. Knight, ???Photonic crystal fibres,??? Nature 424, 847-851 (2003)
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proceedings of the Cambridge

L.N.G. Filon, ???On the variation with the wave-length of the double refraction in strained glass,??? Proceedings of the Cambridge Philosophical Society XI, 478-492 (1902)

L.N.G. Filon, ???On the variation with the wave-length of the double refraction in strained glass,??? Proceedings of the Cambridge Philosophical Society XII, 313-337 (1904).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Microscope image of PM-LMA fiber.

Fig. 2.
Fig. 2.

Spectral attenuation for the three fibers.

Fig. 3.
Fig. 3.

Measurement set-up for group birefringence. GT1 : Input Glan-Thomson polarizer. L1 : Coupling lens into fiber under test (FUT). L2 : Collamating lens for fiber output. GT2 : Output Glan-Thomson polarizer (analyser). L3 : Focussing lens. MM : Multi-mode fiber for light collection and detection in optical spectrum analyser (OSA).

Fig. 4.
Fig. 4.

Measured polarization osciallations, for the largest (left) and smallest (right) values of the relative wavelength, λ/Λ.

Fig. 5.
Fig. 5.

Group birefringence vs. wavelength for the three fibers.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T = cos 2 ( Δ β L )
φ λ = 2 π L λ 2 [ λ Δ n p h λ Δ n p h ] = 2 π L λ 2 Δ n g

Metrics