Abstract

We report cross-section measurement and propagation measurement of modes of large mode area holey fibers using near-field scanning optical microscopy (NSOM). Mode profiles are measured at the fiber end face using a scanning optical fiber tip held 10 nm from the surface, and compared to theoretical models. Both amplitude and phase of the electric field of the propagating light is measured using NSOM techniques as a function of distance from the fiber end, from 10 nm to 150 µm. Good agreement is found between the data and simple scalar paraxial beam propagation simulations of theoretical mode profiles.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J.C.Baggett, T.M.Monro, K.Furusawa, D.J.Richardson, �??Comparative study of large mode holey and conventional fibers,�?? Opt. Lett. 26 1045-1047 (2001).
    [CrossRef]
  2. N. G. R. Broderick, T. M. Monro, P. J. Bennett & D. J. Richardson. "Nonlinearity in holey optical fibers: measurement and future opportunities," Opt. Lett. 24, 1395-1397 (1999).
    [CrossRef]
  3. T. A. Birks, D. Mogilevtsev, J. C. Knight & P. S. Russell, "Dispersion compensation using single-material fibers," IEEE Photonics Technol. Lett. 11, 674-676 (1999).
    [CrossRef]
  4. T. M. Monro & D. J. Richardson, "Holey optical fibres: Fundamental properties and device applications," Comptes Rendus Physique 4, 175-186 (2003).
    [CrossRef]
  5. T. M. Monro, D. J. Richardson, N. G. R. Broderick & P. J. Bennett, "Modeling large air fraction holey optical fibers," J. Lightwave Technol. 18, 50-56 (2000).
    [CrossRef]
  6. K. Karrai & R. D. Grober, "Piezoelectric Tip-Sample Distance Control for Near-Field Optical Microscopes," Appl. Phys. Lett. 66, 1842-1844 (1995).
    [CrossRef]
  7. M. L. M. Balistreri, J. P. Korterik, L. Kuipers & N. F. van Hulst, "Local observations of phase singularities in optical fields in waveguide structures," Phys. Rev. Lett. 85, 294-297 (2000).
    [CrossRef] [PubMed]
  8. J.C. Knight , T.A. Birks, R.F. Cregan, P.S. Russell, J.P. de Sandro, �??Large mode area photonic crystal fibre,�?? Electron. Lett. 4, 1347-13 (1998).
    [CrossRef]
  9. G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1989).
  10. N.A. Mortensen & J.R. Folkenberg, �??Near-field to far-field transition of photonic crystal fibers: symmetries and interference phenomena,�?? Opt. Express 10 475-481(2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-11-475"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-11-475</a>
    [CrossRef] [PubMed]

Appl. Phys. Lett.

K. Karrai & R. D. Grober, "Piezoelectric Tip-Sample Distance Control for Near-Field Optical Microscopes," Appl. Phys. Lett. 66, 1842-1844 (1995).
[CrossRef]

Comptes Rendus Physique

T. M. Monro & D. J. Richardson, "Holey optical fibres: Fundamental properties and device applications," Comptes Rendus Physique 4, 175-186 (2003).
[CrossRef]

Electron. Lett.

J.C. Knight , T.A. Birks, R.F. Cregan, P.S. Russell, J.P. de Sandro, �??Large mode area photonic crystal fibre,�?? Electron. Lett. 4, 1347-13 (1998).
[CrossRef]

IEEE Photonics Technol. Lett.

T. A. Birks, D. Mogilevtsev, J. C. Knight & P. S. Russell, "Dispersion compensation using single-material fibers," IEEE Photonics Technol. Lett. 11, 674-676 (1999).
[CrossRef]

J. Lightwave Technol.

T. M. Monro, D. J. Richardson, N. G. R. Broderick & P. J. Bennett, "Modeling large air fraction holey optical fibers," J. Lightwave Technol. 18, 50-56 (2000).
[CrossRef]

Opt. Express

N.A. Mortensen & J.R. Folkenberg, �??Near-field to far-field transition of photonic crystal fibers: symmetries and interference phenomena,�?? Opt. Express 10 475-481(2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-11-475"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-11-475</a>
[CrossRef] [PubMed]

Opt. Lett.

J.C.Baggett, T.M.Monro, K.Furusawa, D.J.Richardson, �??Comparative study of large mode holey and conventional fibers,�?? Opt. Lett. 26 1045-1047 (2001).
[CrossRef]

N. G. R. Broderick, T. M. Monro, P. J. Bennett & D. J. Richardson. "Nonlinearity in holey optical fibers: measurement and future opportunities," Opt. Lett. 24, 1395-1397 (1999).
[CrossRef]

Phys. Rev. Lett.

M. L. M. Balistreri, J. P. Korterik, L. Kuipers & N. F. van Hulst, "Local observations of phase singularities in optical fields in waveguide structures," Phys. Rev. Lett. 85, 294-297 (2000).
[CrossRef] [PubMed]

Other

G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig 1.
Fig 1.

SEM image of end face of large mode area fiber

Fig. 2.
Fig. 2.

Experimental (a) and theoretical (b) contour plots of the optical field amplitude 100nm above the fiber end face. Contours are linearly spaced, with spacing of 0.1. Maximum amplitude is scaled to 1. The rotation of the field in (a) is an experimental artifact.

Fig. 3.
Fig. 3.

Cross-sections across the optical field amplitude at the end face of the fiber. Red line is a cross-section of the theoretical mode across one of the inner ring of holes, and the red open circles are the equivalent data. Black line is a cross-section in an orthogonal direction, between the holes, and the black open squares are the equivalent data.

Fig. 4.
Fig. 4.

Cross-section of the intensity of the mode as it propagates away from the end face of the fiber. The center of the mode is at the left end of the x-axis. The colormap scale is logarithmic, to show detail in the patterns. The top figure shows the square of the measured field amplitude, and the bottom figure shows the intensity distribution calculated by numerically propagating the theoretical mode.

Fig 5.
Fig 5.

Cross-section of the phase of the mode as it propagates away from the end face of the fiber. The center of the mode is at the left end of the x-axis. The colormap scale shows the cosine of the phase. The top figure shows the measured phase, and the bottom figure shows the phase variation calculated by numerically propagating the theoretical mode. The phase offset is arbitrary.

Fig. 6.
Fig. 6.

Measured cross-sections of the intensity of the mode at longer distances from the fiber end face. Heights above the end face are shown on the figure. The top left frame is measured in contact with the end face, The intensity colormap scale is logarithmic to show low-intensity detail. The center of the mode is in the bottom left corner of each frame.

Metrics