Abstract

We present measurements of cross-coherence between independent supercontinua, generated at 1550 nm. An all-fiber supercontinuum source, consisting of a femtosecond fiber laser, fiber amplifier, and highly-nonlinear dispersion shifted fiber is characterized. Supercontinua generated from both 2 picosecond and 188 femtosecond pump pulses are considered. The continua generated with picosecond pulses show a degradation in coherence as the pump power is increased, whereas a high degree of cross-coherence over a broad wavelength range can be maintained when femtosecond pulses are used.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27, (2000).
    [Crossref]
  2. T. A. Birks, W. J. Wadsworth, and P. S. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417, (2000).
    [Crossref]
  3. N. Nishizawa and T. Goto, “Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,” Jpn. J. Appl. Phys. 40, L365–L367, (2001).
    [Crossref]
  4. J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jørgensen, and T. Veng, “All fiber, octave spanning supercontinuum,” Opt. Lett. 28, 643–645, (2003).
    [Crossref] [PubMed]
  5. J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218, (2003).
    [Crossref]
  6. M. Bellini and T. W. Hänsch, “Phase-locked white-light continuum pulses: Toward a universal optical frequency-comb synthesizer,” Opt. Lett. 25, 1049–1051, (2000).
    [Crossref]
  7. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639, (2000).
    [Crossref] [PubMed]
  8. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “A phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29, 250–252, (2004).
    [Crossref] [PubMed]
  9. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608–610, (2001).
    [Crossref]
  10. Y. Takushima, F. Futami, and K. Kikuchi, “Generation of over 140-nm-wide super-continuum from a normal dispersion fiber by using a mode-locked semiconductor laser source,” IEEE Photon. Technol. Lett. 10, 1560, (1998).
    [Crossref]
  11. T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Transform-limited, femtosecondWDMpulse generation by spectral filtering of gigahertz supercontinuum” Electron. Lett. 30, 1166, (1994).
    [Crossref]
  12. T. Okuno, M. Onishi, and M. Nishimura, “Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber,” IEEE Photon. Technol. Lett. 10, 72, (1998).
    [Crossref]
  13. C. X. Yu, H. A. Haus, I. P. Ippen, W. S. Wong, and A. Sysoliatin, “Gigahertz-repitition-rate mode-locked fiber laser for continuum generation,” Opt. Lett. 25, 1418–1420, (2000).
    [Crossref]
  14. F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibres over the entire spectral range from 1.1 µm to 1.7 µm,” Opt. Commun. 175, 209–213, (2000).
    [Crossref]
  15. J. Jasapara, R. Bise, and R. Windeler, “Chromatic dispersion measurements in a photonic bandgap fiber,” In Optical Fiber Communication Conference 2002, Vol. 70 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2002), pp. 519–521
    [Crossref]
  16. M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Tech. 4, 215–223, (1998).
    [Crossref]
  17. H. Kubota, K. Tamura, and M. Nakazawa, “Analysis of coherence-maintained ultrashort optical pulse trains and supercontinuum generation in the presence of soliton-amplified spontaneous-emission interaction,” J. Opt. Soc. Am. B 16, 2223–2232, (1999).
    [Crossref]
  18. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crstal and tapered optical fibers,” Opt. Lett. 27, 1180–1182, (2002).
    [Crossref]
  19. K. J. Blow and D. Wood. “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673, (1989).
    [Crossref]
  20. X. Gu, M. Kimmel, A. Sheenath, and R. Trebino, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11, 2697–2703, (2003).
    [Crossref] [PubMed]
  21. J. Nicholson, M. Yan, A. Yablon, P. Wisk, J. Fleming, F. DiMarcello, and E. Monberg, “A high coherence super-continuum source at 1550 nm,” In Optical Fiber Communication Conference 2003, Vol. 86 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2003), pp. 511–512
  22. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse modelocked all-fiber ring laser,” Opt. Lett. 18, 1080–1082, (1993).
    [Crossref] [PubMed]
  23. D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Self-starting, passively mode-locked erbium fibre ring laser based on the amplifying sagnac switch,” Electron. Lett. 27, 542–544, (1991).
    [Crossref]
  24. I. N. Duling, “Subpicosecond all-fibre erbium laser,” Electron. Lett. 27, 544, (1991).
    [Crossref]

2004 (1)

2003 (3)

2002 (1)

2001 (2)

N. Nishizawa and T. Goto, “Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,” Jpn. J. Appl. Phys. 40, L365–L367, (2001).
[Crossref]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608–610, (2001).
[Crossref]

2000 (6)

1999 (1)

1998 (3)

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Tech. 4, 215–223, (1998).
[Crossref]

T. Okuno, M. Onishi, and M. Nishimura, “Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber,” IEEE Photon. Technol. Lett. 10, 72, (1998).
[Crossref]

Y. Takushima, F. Futami, and K. Kikuchi, “Generation of over 140-nm-wide super-continuum from a normal dispersion fiber by using a mode-locked semiconductor laser source,” IEEE Photon. Technol. Lett. 10, 1560, (1998).
[Crossref]

1994 (1)

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Transform-limited, femtosecondWDMpulse generation by spectral filtering of gigahertz supercontinuum” Electron. Lett. 30, 1166, (1994).
[Crossref]

1993 (1)

1991 (2)

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Self-starting, passively mode-locked erbium fibre ring laser based on the amplifying sagnac switch,” Electron. Lett. 27, 542–544, (1991).
[Crossref]

I. N. Duling, “Subpicosecond all-fibre erbium laser,” Electron. Lett. 27, 544, (1991).
[Crossref]

1989 (1)

K. J. Blow and D. Wood. “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673, (1989).
[Crossref]

Abeeluck, A. K.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218, (2003).
[Crossref]

Bellini, M.

Birks, T. A.

Bise, R.

J. Jasapara, R. Bise, and R. Windeler, “Chromatic dispersion measurements in a photonic bandgap fiber,” In Optical Fiber Communication Conference 2002, Vol. 70 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2002), pp. 519–521
[Crossref]

Blow, K. J.

K. J. Blow and D. Wood. “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673, (1989).
[Crossref]

Chernikov, S. V.

F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibres over the entire spectral range from 1.1 µm to 1.7 µm,” Opt. Commun. 175, 209–213, (2000).
[Crossref]

Chudoba, C.

Coen, S.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639, (2000).
[Crossref] [PubMed]

Diddams, S. A.

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “A phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29, 250–252, (2004).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639, (2000).
[Crossref] [PubMed]

DiMarcello, F.

J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jørgensen, and T. Veng, “All fiber, octave spanning supercontinuum,” Opt. Lett. 28, 643–645, (2003).
[Crossref] [PubMed]

J. Nicholson, M. Yan, A. Yablon, P. Wisk, J. Fleming, F. DiMarcello, and E. Monberg, “A high coherence super-continuum source at 1550 nm,” In Optical Fiber Communication Conference 2003, Vol. 86 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2003), pp. 511–512

Dudley, J. M.

Duling, I. N.

I. N. Duling, “Subpicosecond all-fibre erbium laser,” Electron. Lett. 27, 544, (1991).
[Crossref]

Fleming, J.

J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jørgensen, and T. Veng, “All fiber, octave spanning supercontinuum,” Opt. Lett. 28, 643–645, (2003).
[Crossref] [PubMed]

J. Nicholson, M. Yan, A. Yablon, P. Wisk, J. Fleming, F. DiMarcello, and E. Monberg, “A high coherence super-continuum source at 1550 nm,” In Optical Fiber Communication Conference 2003, Vol. 86 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2003), pp. 511–512

Fujimoto, J. G.

Futami, F.

Y. Takushima, F. Futami, and K. Kikuchi, “Generation of over 140-nm-wide super-continuum from a normal dispersion fiber by using a mode-locked semiconductor laser source,” IEEE Photon. Technol. Lett. 10, 1560, (1998).
[Crossref]

Ghanta, R. K.

Goto, T.

N. Nishizawa and T. Goto, “Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,” Jpn. J. Appl. Phys. 40, L365–L367, (2001).
[Crossref]

Gu, X.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639, (2000).
[Crossref] [PubMed]

Hänsch, T. W.

Hartl, I.

Haus, H. A.

Headley, C.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218, (2003).
[Crossref]

Ippen, E. P.

Ippen, I. P.

Jasapara, J.

J. Jasapara, R. Bise, and R. Windeler, “Chromatic dispersion measurements in a photonic bandgap fiber,” In Optical Fiber Communication Conference 2002, Vol. 70 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2002), pp. 519–521
[Crossref]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639, (2000).
[Crossref] [PubMed]

Jørgensen, C.

Jørgensen, C. G.

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “A phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29, 250–252, (2004).
[Crossref] [PubMed]

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218, (2003).
[Crossref]

Kawanishi, S.

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Transform-limited, femtosecondWDMpulse generation by spectral filtering of gigahertz supercontinuum” Electron. Lett. 30, 1166, (1994).
[Crossref]

Kikuchi, K.

Y. Takushima, F. Futami, and K. Kikuchi, “Generation of over 140-nm-wide super-continuum from a normal dispersion fiber by using a mode-locked semiconductor laser source,” IEEE Photon. Technol. Lett. 10, 1560, (1998).
[Crossref]

Kimmel, M.

Ko, T. H.

Koch, F.

F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibres over the entire spectral range from 1.1 µm to 1.7 µm,” Opt. Commun. 175, 209–213, (2000).
[Crossref]

Kubota, H.

H. Kubota, K. Tamura, and M. Nakazawa, “Analysis of coherence-maintained ultrashort optical pulse trains and supercontinuum generation in the presence of soliton-amplified spontaneous-emission interaction,” J. Opt. Soc. Am. B 16, 2223–2232, (1999).
[Crossref]

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Tech. 4, 215–223, (1998).
[Crossref]

Laming, R. I.

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Self-starting, passively mode-locked erbium fibre ring laser based on the amplifying sagnac switch,” Electron. Lett. 27, 542–544, (1991).
[Crossref]

Li, X. D.

Matsas, V.

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Self-starting, passively mode-locked erbium fibre ring laser based on the amplifying sagnac switch,” Electron. Lett. 27, 542–544, (1991).
[Crossref]

Monberg, E.

J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jørgensen, and T. Veng, “All fiber, octave spanning supercontinuum,” Opt. Lett. 28, 643–645, (2003).
[Crossref] [PubMed]

J. Nicholson, M. Yan, A. Yablon, P. Wisk, J. Fleming, F. DiMarcello, and E. Monberg, “A high coherence super-continuum source at 1550 nm,” In Optical Fiber Communication Conference 2003, Vol. 86 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2003), pp. 511–512

Mori, K.

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Transform-limited, femtosecondWDMpulse generation by spectral filtering of gigahertz supercontinuum” Electron. Lett. 30, 1166, (1994).
[Crossref]

Morioka, T.

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Transform-limited, femtosecondWDMpulse generation by spectral filtering of gigahertz supercontinuum” Electron. Lett. 30, 1166, (1994).
[Crossref]

Nakazawa, M.

H. Kubota, K. Tamura, and M. Nakazawa, “Analysis of coherence-maintained ultrashort optical pulse trains and supercontinuum generation in the presence of soliton-amplified spontaneous-emission interaction,” J. Opt. Soc. Am. B 16, 2223–2232, (1999).
[Crossref]

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Tech. 4, 215–223, (1998).
[Crossref]

Nelson, L. E.

Newbury, N. R.

Nicholson, J.

J. Nicholson, M. Yan, A. Yablon, P. Wisk, J. Fleming, F. DiMarcello, and E. Monberg, “A high coherence super-continuum source at 1550 nm,” In Optical Fiber Communication Conference 2003, Vol. 86 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2003), pp. 511–512

Nicholson, J. W.

Nishimura, M.

T. Okuno, M. Onishi, and M. Nishimura, “Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber,” IEEE Photon. Technol. Lett. 10, 72, (1998).
[Crossref]

Nishizawa, N.

N. Nishizawa and T. Goto, “Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,” Jpn. J. Appl. Phys. 40, L365–L367, (2001).
[Crossref]

Okuno, T.

T. Okuno, M. Onishi, and M. Nishimura, “Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber,” IEEE Photon. Technol. Lett. 10, 72, (1998).
[Crossref]

Onishi, M.

T. Okuno, M. Onishi, and M. Nishimura, “Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber,” IEEE Photon. Technol. Lett. 10, 72, (1998).
[Crossref]

Payne, D. N.

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Self-starting, passively mode-locked erbium fibre ring laser based on the amplifying sagnac switch,” Electron. Lett. 27, 542–544, (1991).
[Crossref]

Phillips, M. W.

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Self-starting, passively mode-locked erbium fibre ring laser based on the amplifying sagnac switch,” Electron. Lett. 27, 542–544, (1991).
[Crossref]

Ranka, J. K.

Richardson, D. J.

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Self-starting, passively mode-locked erbium fibre ring laser based on the amplifying sagnac switch,” Electron. Lett. 27, 542–544, (1991).
[Crossref]

Russell, P. S.

Saruwatari, M.

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Transform-limited, femtosecondWDMpulse generation by spectral filtering of gigahertz supercontinuum” Electron. Lett. 30, 1166, (1994).
[Crossref]

Sheenath, A.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639, (2000).
[Crossref] [PubMed]

Stentz, A. J.

Sysoliatin, A.

Takushima, Y.

Y. Takushima, F. Futami, and K. Kikuchi, “Generation of over 140-nm-wide super-continuum from a normal dispersion fiber by using a mode-locked semiconductor laser source,” IEEE Photon. Technol. Lett. 10, 1560, (1998).
[Crossref]

Tamura, K.

Taylor, J. R.

F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibres over the entire spectral range from 1.1 µm to 1.7 µm,” Opt. Commun. 175, 209–213, (2000).
[Crossref]

Trebino, R.

Veng, T.

Wadsworth, W. J.

Washburn, B. R.

Windeler, R.

J. Jasapara, R. Bise, and R. Windeler, “Chromatic dispersion measurements in a photonic bandgap fiber,” In Optical Fiber Communication Conference 2002, Vol. 70 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2002), pp. 519–521
[Crossref]

Windeler, R. S.

Wisk, P.

J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jørgensen, and T. Veng, “All fiber, octave spanning supercontinuum,” Opt. Lett. 28, 643–645, (2003).
[Crossref] [PubMed]

J. Nicholson, M. Yan, A. Yablon, P. Wisk, J. Fleming, F. DiMarcello, and E. Monberg, “A high coherence super-continuum source at 1550 nm,” In Optical Fiber Communication Conference 2003, Vol. 86 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2003), pp. 511–512

Wong, W. S.

Wood, D.

K. J. Blow and D. Wood. “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673, (1989).
[Crossref]

Yablon, A.

J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jørgensen, and T. Veng, “All fiber, octave spanning supercontinuum,” Opt. Lett. 28, 643–645, (2003).
[Crossref] [PubMed]

J. Nicholson, M. Yan, A. Yablon, P. Wisk, J. Fleming, F. DiMarcello, and E. Monberg, “A high coherence super-continuum source at 1550 nm,” In Optical Fiber Communication Conference 2003, Vol. 86 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2003), pp. 511–512

Yan, M.

J. Nicholson, M. Yan, A. Yablon, P. Wisk, J. Fleming, F. DiMarcello, and E. Monberg, “A high coherence super-continuum source at 1550 nm,” In Optical Fiber Communication Conference 2003, Vol. 86 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2003), pp. 511–512

Yan, M. F.

Yoshida, E.

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Tech. 4, 215–223, (1998).
[Crossref]

Yu, C. X.

Appl. Phys. B (1)

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218, (2003).
[Crossref]

Electron. Lett. (3)

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Transform-limited, femtosecondWDMpulse generation by spectral filtering of gigahertz supercontinuum” Electron. Lett. 30, 1166, (1994).
[Crossref]

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, “Self-starting, passively mode-locked erbium fibre ring laser based on the amplifying sagnac switch,” Electron. Lett. 27, 542–544, (1991).
[Crossref]

I. N. Duling, “Subpicosecond all-fibre erbium laser,” Electron. Lett. 27, 544, (1991).
[Crossref]

IEEE J. Quantum Electron. (1)

K. J. Blow and D. Wood. “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673, (1989).
[Crossref]

IEEE Photon. Technol. Lett. (2)

T. Okuno, M. Onishi, and M. Nishimura, “Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber,” IEEE Photon. Technol. Lett. 10, 72, (1998).
[Crossref]

Y. Takushima, F. Futami, and K. Kikuchi, “Generation of over 140-nm-wide super-continuum from a normal dispersion fiber by using a mode-locked semiconductor laser source,” IEEE Photon. Technol. Lett. 10, 1560, (1998).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

N. Nishizawa and T. Goto, “Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,” Jpn. J. Appl. Phys. 40, L365–L367, (2001).
[Crossref]

Opt. Commun. (1)

F. Koch, S. V. Chernikov, and J. R. Taylor, “Dispersion measurement in optical fibres over the entire spectral range from 1.1 µm to 1.7 µm,” Opt. Commun. 175, 209–213, (2000).
[Crossref]

Opt. Express (1)

Opt. Fiber Tech. (1)

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Tech. 4, 215–223, (1998).
[Crossref]

Opt. Lett. (9)

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “A phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29, 250–252, (2004).
[Crossref] [PubMed]

M. Bellini and T. W. Hänsch, “Phase-locked white-light continuum pulses: Toward a universal optical frequency-comb synthesizer,” Opt. Lett. 25, 1049–1051, (2000).
[Crossref]

T. A. Birks, W. J. Wadsworth, and P. S. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417, (2000).
[Crossref]

C. X. Yu, H. A. Haus, I. P. Ippen, W. S. Wong, and A. Sysoliatin, “Gigahertz-repitition-rate mode-locked fiber laser for continuum generation,” Opt. Lett. 25, 1418–1420, (2000).
[Crossref]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608–610, (2001).
[Crossref]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crstal and tapered optical fibers,” Opt. Lett. 27, 1180–1182, (2002).
[Crossref]

J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jørgensen, and T. Veng, “All fiber, octave spanning supercontinuum,” Opt. Lett. 28, 643–645, (2003).
[Crossref] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27, (2000).
[Crossref]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse modelocked all-fiber ring laser,” Opt. Lett. 18, 1080–1082, (1993).
[Crossref] [PubMed]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639, (2000).
[Crossref] [PubMed]

Other (2)

J. Jasapara, R. Bise, and R. Windeler, “Chromatic dispersion measurements in a photonic bandgap fiber,” In Optical Fiber Communication Conference 2002, Vol. 70 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2002), pp. 519–521
[Crossref]

J. Nicholson, M. Yan, A. Yablon, P. Wisk, J. Fleming, F. DiMarcello, and E. Monberg, “A high coherence super-continuum source at 1550 nm,” In Optical Fiber Communication Conference 2003, Vol. 86 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2003), pp. 511–512

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

All-fiber supercontinuum sources used in cross-coherence measurements.

Fig. 2.
Fig. 2.

Two possible setups for interfering independently generated continua. The setup in (b) is the one used for the experiments described in this work.

Fig. 3.
Fig. 3.

(a) Setup for generating supercontinua from picosecond pulses. (b) Supercontinuum spectrum at full launch power (red curve) and initial pulse spectrum (blue curve).

Fig. 4.
Fig. 4.

Picosecond pulse spectrum and spectral fringes from interference between consecutive ps pulses.

Fig. 5.
Fig. 5.

Spectral interference fringes in supercontinua generated from ps pulses as a function of launched pulse power.

Fig. 6.
Fig. 6.

(a) Pulse spectrum from the laser oscillator and interference spectrum between consecutive fs pulses. (b) Continuum generated from the oscillator with 1 mW average power from the hybrid HNLF and a constant dispersion HNLF with D=2.2 ps/(nm-km) at 1550 nm. Spectra have been offset vertically for clarity.

Fig. 7.
Fig. 7.

Interference fringes in supercontinua from 188 fs pulses with an average power of 1 mW and a repetition rate of 50 MHz in (a),(c),(d) the hybrid HNLF, and (b) constant dispersion HNLF.

Fig. 8.
Fig. 8.

(a) Measured supercontinuum and (b) fringe visibility using amplified femtosecond pulses. Note that the fine spectral features observed in (a) are not spectral fringes due to interference but features inherent in the spectrum from the continuum generation process itself.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V ( λ , τ ) = I max ( λ , τ ) I min ( λ , τ ) I max ( λ , τ ) + I min ( λ , τ ) .

Metrics