Abstract

We report a novel external cavity laser diode (λ=1.5 µm). An intra-cavity liquid crystal pixel mirror allows digitally tuning of the laser wavelength to more than 40 wavelength channels of 100 GHz spacing according to the International Telecommunication Union (ITU) grid. Laser wavelength can further be fine-tuned by varying the driving voltages applied to an intra-cavity planar nematic liquid crystal phase plate. With a cell 52.3 µm in thickness, the output frequency can be continuously tuned over 1.89 GHz. The root-mean-square voltage required for driving the phase plate was from 1.00 to 4.56 volts.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mode-hop-free fine tuning of an external-cavity diode laser with an intracavity liquid crystal cell

Yu-Ping Lan, Ru-Pin Pan, and Ci-Ling Pan
Opt. Lett. 29(5) 510-512 (2004)

C-band external-cavity wavelength-tunable laser based on a liquid-crystal deflector

P. Wang, L. K. Seah, V. M. Murukeshan, Z. X. Chao, and X. J. Yin
Appl. Opt. 46(23) 5866-5869 (2007)

Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate

Cho-Fan Hsieh, Ru-Pin Pan, Tsung-Ta Tang, Hung-Lung Chen, and Ci-Ling Pan
Opt. Lett. 31(8) 1112-1114 (2006)

References

  • View by:
  • |
  • |
  • |

  1. H. Hatateyama, K. Kudo, Y. Yokoyama, K. Naniwae, and T. Sasaki, “Wavelength-selectable microarray light source for wide-band DWDM applications,” IEEE J. Select. Topics Quantum. Electron. 8, 1341–1348 (2002)
    [Crossref]
  2. R. O’Dowd, S. O’Duill, G. Mulvihill, N. O’Gorman, and Y. Yu, “Frequency plan and wavelength switching limits for widely tunable semiconductor transmitters,” IEEE J. Select. Topics Quantum Electron. 7, 259–269 (2001).
    [Crossref]
  3. C. -K. Chan, K. L. Sherman, and M. Zirngibl, “A fast 100-channel wavelength-tunable transmitter for optical packet switching,” IEEE Photon. Technol. Lett. 13, 729–731 (2001).
    [Crossref]
  4. M. Kauer, M. Girault, J. Leuthold, J. Honthaas, O. Pellegri, C. Goullancourt, and M. Zringibl, “16-channel digitally tunable external-cavity laser with nanosecond switching time,” IEEE Photon. Technol. Lett. 15, 371–373 (2003).
    [Crossref]
  5. X. M. Zhang, A. Q. Liu, D. Y. Tang, and C. Lu, “Discrete wavelength tunable laser using microelectromechanical systems technology,” Appl. Phys. Lett. 84, 329–331 (2004).
    [Crossref]
  6. N. J. C. Libatique, li Wang, and R. K. Jain, “Single-longitudinal-mode tunable WDM-channel-selectable fiber laser,” Opt. Express 10, 1503–1507 (2002).
    [Crossref] [PubMed]
  7. C. -L. Pan, S-H Tsai, R-P Pan, C-R Sheu, and S. C. Wang, “Tunable semiconductor laser with liquid crystal pixel mirror in grating-loaded external cavity,” Electron. Lett. 35, 1472–1473 (1999).
    [Crossref]
  8. R. -P. Pan, H.-C. Tung, C. -R. Sheu, M. -J. Huang, and C. -L. Pan, “Wavelength Tunable Semiconductor Laser with a Liquid Crystal Pixel Mirror,” in Liquid Crystal Materials, Devices VIII Applications, L. C. Chien, Editors, Proceedings of SPIE, 4658, 91–100 (2002).
  9. J. Struckmeier, A. Euteneuer, B. Smarsly, M. Breede, M. Born, and M. Hofmann, “Electronically tunable external-cavity laser diode,” Opt. Lett. 24, 1573–1574 (1999).
    [Crossref]
  10. M. Breede, et al., “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
    [Crossref]
  11. Yu-Ping Lan, Chao-Yuan Chen, Ru-Pin Pan, and Ci-Ling Pan, “Fine tuning of a diode laser wavelength with a liquid crystal intracavity element,” Opt. Eng. 43, 234–238 (2004).
    [Crossref]
  12. Yu-Ping Lan, Ru-Pin Pan, and Ci-Ling Pan, “Mode-hop-free fine-tuning of an external-cavity diode laser wavelength with an intracavity liquid crystal cell,” Opt. Lett. 29, 510–512 (2004).
    [Crossref] [PubMed]
  13. M. -J. Huang, et al., “Multimode optical demultiplexer for DWDM with liquid crystal enabled functionalities,” IEEE Photon. Technol. Lett.,  16, 2254–2256 (2004).
    [Crossref]
  14. S. Brugioni, S. Faetti Pan, and R. Meucci, “Mid-infrared refractive indices of the nematic mixture,” Liquid Crystals 30, 927–930 (2003).
    [Crossref]
  15. Shin-Tson. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33, 1270–1274 (1986).
    [Crossref] [PubMed]
  16. A. Godard, S. G. Pauliat, G. Roosen, P. Graindorge, and P. Martin, “Side-mode gain in grating-tuned extended-cavity semiconductor lasers: investigation of stable single-mode operation conditions,” IEEE J. Quantum Electron. 38, 390–401 (2002).
    [Crossref]
  17. A. Godard, S. G. Pauliat, G. Roosen, and E. Ducloux, “Modal competition via four-wave mixing in single-mode extended-cavity semiconductor lasers,” IEEE J. Quantum Electron. 40, 970–981 (2004).
    [Crossref]

2004 (5)

X. M. Zhang, A. Q. Liu, D. Y. Tang, and C. Lu, “Discrete wavelength tunable laser using microelectromechanical systems technology,” Appl. Phys. Lett. 84, 329–331 (2004).
[Crossref]

Yu-Ping Lan, Chao-Yuan Chen, Ru-Pin Pan, and Ci-Ling Pan, “Fine tuning of a diode laser wavelength with a liquid crystal intracavity element,” Opt. Eng. 43, 234–238 (2004).
[Crossref]

Yu-Ping Lan, Ru-Pin Pan, and Ci-Ling Pan, “Mode-hop-free fine-tuning of an external-cavity diode laser wavelength with an intracavity liquid crystal cell,” Opt. Lett. 29, 510–512 (2004).
[Crossref] [PubMed]

M. -J. Huang, et al., “Multimode optical demultiplexer for DWDM with liquid crystal enabled functionalities,” IEEE Photon. Technol. Lett.,  16, 2254–2256 (2004).
[Crossref]

A. Godard, S. G. Pauliat, G. Roosen, and E. Ducloux, “Modal competition via four-wave mixing in single-mode extended-cavity semiconductor lasers,” IEEE J. Quantum Electron. 40, 970–981 (2004).
[Crossref]

2003 (2)

S. Brugioni, S. Faetti Pan, and R. Meucci, “Mid-infrared refractive indices of the nematic mixture,” Liquid Crystals 30, 927–930 (2003).
[Crossref]

M. Kauer, M. Girault, J. Leuthold, J. Honthaas, O. Pellegri, C. Goullancourt, and M. Zringibl, “16-channel digitally tunable external-cavity laser with nanosecond switching time,” IEEE Photon. Technol. Lett. 15, 371–373 (2003).
[Crossref]

2002 (4)

M. Breede, et al., “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[Crossref]

H. Hatateyama, K. Kudo, Y. Yokoyama, K. Naniwae, and T. Sasaki, “Wavelength-selectable microarray light source for wide-band DWDM applications,” IEEE J. Select. Topics Quantum. Electron. 8, 1341–1348 (2002)
[Crossref]

N. J. C. Libatique, li Wang, and R. K. Jain, “Single-longitudinal-mode tunable WDM-channel-selectable fiber laser,” Opt. Express 10, 1503–1507 (2002).
[Crossref] [PubMed]

A. Godard, S. G. Pauliat, G. Roosen, P. Graindorge, and P. Martin, “Side-mode gain in grating-tuned extended-cavity semiconductor lasers: investigation of stable single-mode operation conditions,” IEEE J. Quantum Electron. 38, 390–401 (2002).
[Crossref]

2001 (2)

R. O’Dowd, S. O’Duill, G. Mulvihill, N. O’Gorman, and Y. Yu, “Frequency plan and wavelength switching limits for widely tunable semiconductor transmitters,” IEEE J. Select. Topics Quantum Electron. 7, 259–269 (2001).
[Crossref]

C. -K. Chan, K. L. Sherman, and M. Zirngibl, “A fast 100-channel wavelength-tunable transmitter for optical packet switching,” IEEE Photon. Technol. Lett. 13, 729–731 (2001).
[Crossref]

1999 (2)

C. -L. Pan, S-H Tsai, R-P Pan, C-R Sheu, and S. C. Wang, “Tunable semiconductor laser with liquid crystal pixel mirror in grating-loaded external cavity,” Electron. Lett. 35, 1472–1473 (1999).
[Crossref]

J. Struckmeier, A. Euteneuer, B. Smarsly, M. Breede, M. Born, and M. Hofmann, “Electronically tunable external-cavity laser diode,” Opt. Lett. 24, 1573–1574 (1999).
[Crossref]

1986 (1)

Shin-Tson. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33, 1270–1274 (1986).
[Crossref] [PubMed]

Born, M.

Breede, M.

Brugioni, S.

S. Brugioni, S. Faetti Pan, and R. Meucci, “Mid-infrared refractive indices of the nematic mixture,” Liquid Crystals 30, 927–930 (2003).
[Crossref]

Chan, C. -K.

C. -K. Chan, K. L. Sherman, and M. Zirngibl, “A fast 100-channel wavelength-tunable transmitter for optical packet switching,” IEEE Photon. Technol. Lett. 13, 729–731 (2001).
[Crossref]

Chen, Chao-Yuan

Yu-Ping Lan, Chao-Yuan Chen, Ru-Pin Pan, and Ci-Ling Pan, “Fine tuning of a diode laser wavelength with a liquid crystal intracavity element,” Opt. Eng. 43, 234–238 (2004).
[Crossref]

Ducloux, E.

A. Godard, S. G. Pauliat, G. Roosen, and E. Ducloux, “Modal competition via four-wave mixing in single-mode extended-cavity semiconductor lasers,” IEEE J. Quantum Electron. 40, 970–981 (2004).
[Crossref]

Euteneuer, A.

Faetti Pan, S.

S. Brugioni, S. Faetti Pan, and R. Meucci, “Mid-infrared refractive indices of the nematic mixture,” Liquid Crystals 30, 927–930 (2003).
[Crossref]

Girault, M.

M. Kauer, M. Girault, J. Leuthold, J. Honthaas, O. Pellegri, C. Goullancourt, and M. Zringibl, “16-channel digitally tunable external-cavity laser with nanosecond switching time,” IEEE Photon. Technol. Lett. 15, 371–373 (2003).
[Crossref]

Godard, A.

A. Godard, S. G. Pauliat, G. Roosen, and E. Ducloux, “Modal competition via four-wave mixing in single-mode extended-cavity semiconductor lasers,” IEEE J. Quantum Electron. 40, 970–981 (2004).
[Crossref]

A. Godard, S. G. Pauliat, G. Roosen, P. Graindorge, and P. Martin, “Side-mode gain in grating-tuned extended-cavity semiconductor lasers: investigation of stable single-mode operation conditions,” IEEE J. Quantum Electron. 38, 390–401 (2002).
[Crossref]

Goullancourt, C.

M. Kauer, M. Girault, J. Leuthold, J. Honthaas, O. Pellegri, C. Goullancourt, and M. Zringibl, “16-channel digitally tunable external-cavity laser with nanosecond switching time,” IEEE Photon. Technol. Lett. 15, 371–373 (2003).
[Crossref]

Graindorge, P.

A. Godard, S. G. Pauliat, G. Roosen, P. Graindorge, and P. Martin, “Side-mode gain in grating-tuned extended-cavity semiconductor lasers: investigation of stable single-mode operation conditions,” IEEE J. Quantum Electron. 38, 390–401 (2002).
[Crossref]

Hatateyama, H.

H. Hatateyama, K. Kudo, Y. Yokoyama, K. Naniwae, and T. Sasaki, “Wavelength-selectable microarray light source for wide-band DWDM applications,” IEEE J. Select. Topics Quantum. Electron. 8, 1341–1348 (2002)
[Crossref]

Hofmann, M.

Honthaas, J.

M. Kauer, M. Girault, J. Leuthold, J. Honthaas, O. Pellegri, C. Goullancourt, and M. Zringibl, “16-channel digitally tunable external-cavity laser with nanosecond switching time,” IEEE Photon. Technol. Lett. 15, 371–373 (2003).
[Crossref]

Huang, M. -J.

M. -J. Huang, et al., “Multimode optical demultiplexer for DWDM with liquid crystal enabled functionalities,” IEEE Photon. Technol. Lett.,  16, 2254–2256 (2004).
[Crossref]

R. -P. Pan, H.-C. Tung, C. -R. Sheu, M. -J. Huang, and C. -L. Pan, “Wavelength Tunable Semiconductor Laser with a Liquid Crystal Pixel Mirror,” in Liquid Crystal Materials, Devices VIII Applications, L. C. Chien, Editors, Proceedings of SPIE, 4658, 91–100 (2002).

Jain, R. K.

Kauer, M.

M. Kauer, M. Girault, J. Leuthold, J. Honthaas, O. Pellegri, C. Goullancourt, and M. Zringibl, “16-channel digitally tunable external-cavity laser with nanosecond switching time,” IEEE Photon. Technol. Lett. 15, 371–373 (2003).
[Crossref]

Kudo, K.

H. Hatateyama, K. Kudo, Y. Yokoyama, K. Naniwae, and T. Sasaki, “Wavelength-selectable microarray light source for wide-band DWDM applications,” IEEE J. Select. Topics Quantum. Electron. 8, 1341–1348 (2002)
[Crossref]

Lan, Yu-Ping

Yu-Ping Lan, Chao-Yuan Chen, Ru-Pin Pan, and Ci-Ling Pan, “Fine tuning of a diode laser wavelength with a liquid crystal intracavity element,” Opt. Eng. 43, 234–238 (2004).
[Crossref]

Yu-Ping Lan, Ru-Pin Pan, and Ci-Ling Pan, “Mode-hop-free fine-tuning of an external-cavity diode laser wavelength with an intracavity liquid crystal cell,” Opt. Lett. 29, 510–512 (2004).
[Crossref] [PubMed]

Leuthold, J.

M. Kauer, M. Girault, J. Leuthold, J. Honthaas, O. Pellegri, C. Goullancourt, and M. Zringibl, “16-channel digitally tunable external-cavity laser with nanosecond switching time,” IEEE Photon. Technol. Lett. 15, 371–373 (2003).
[Crossref]

Libatique, N. J. C.

Liu, A. Q.

X. M. Zhang, A. Q. Liu, D. Y. Tang, and C. Lu, “Discrete wavelength tunable laser using microelectromechanical systems technology,” Appl. Phys. Lett. 84, 329–331 (2004).
[Crossref]

Lu, C.

X. M. Zhang, A. Q. Liu, D. Y. Tang, and C. Lu, “Discrete wavelength tunable laser using microelectromechanical systems technology,” Appl. Phys. Lett. 84, 329–331 (2004).
[Crossref]

Martin, P.

A. Godard, S. G. Pauliat, G. Roosen, P. Graindorge, and P. Martin, “Side-mode gain in grating-tuned extended-cavity semiconductor lasers: investigation of stable single-mode operation conditions,” IEEE J. Quantum Electron. 38, 390–401 (2002).
[Crossref]

Meucci, R.

S. Brugioni, S. Faetti Pan, and R. Meucci, “Mid-infrared refractive indices of the nematic mixture,” Liquid Crystals 30, 927–930 (2003).
[Crossref]

Mulvihill, G.

R. O’Dowd, S. O’Duill, G. Mulvihill, N. O’Gorman, and Y. Yu, “Frequency plan and wavelength switching limits for widely tunable semiconductor transmitters,” IEEE J. Select. Topics Quantum Electron. 7, 259–269 (2001).
[Crossref]

Naniwae, K.

H. Hatateyama, K. Kudo, Y. Yokoyama, K. Naniwae, and T. Sasaki, “Wavelength-selectable microarray light source for wide-band DWDM applications,” IEEE J. Select. Topics Quantum. Electron. 8, 1341–1348 (2002)
[Crossref]

O’Dowd, R.

R. O’Dowd, S. O’Duill, G. Mulvihill, N. O’Gorman, and Y. Yu, “Frequency plan and wavelength switching limits for widely tunable semiconductor transmitters,” IEEE J. Select. Topics Quantum Electron. 7, 259–269 (2001).
[Crossref]

O’Duill, S.

R. O’Dowd, S. O’Duill, G. Mulvihill, N. O’Gorman, and Y. Yu, “Frequency plan and wavelength switching limits for widely tunable semiconductor transmitters,” IEEE J. Select. Topics Quantum Electron. 7, 259–269 (2001).
[Crossref]

O’Gorman, N.

R. O’Dowd, S. O’Duill, G. Mulvihill, N. O’Gorman, and Y. Yu, “Frequency plan and wavelength switching limits for widely tunable semiconductor transmitters,” IEEE J. Select. Topics Quantum Electron. 7, 259–269 (2001).
[Crossref]

Pan, C. -L.

C. -L. Pan, S-H Tsai, R-P Pan, C-R Sheu, and S. C. Wang, “Tunable semiconductor laser with liquid crystal pixel mirror in grating-loaded external cavity,” Electron. Lett. 35, 1472–1473 (1999).
[Crossref]

R. -P. Pan, H.-C. Tung, C. -R. Sheu, M. -J. Huang, and C. -L. Pan, “Wavelength Tunable Semiconductor Laser with a Liquid Crystal Pixel Mirror,” in Liquid Crystal Materials, Devices VIII Applications, L. C. Chien, Editors, Proceedings of SPIE, 4658, 91–100 (2002).

Pan, Ci-Ling

Yu-Ping Lan, Chao-Yuan Chen, Ru-Pin Pan, and Ci-Ling Pan, “Fine tuning of a diode laser wavelength with a liquid crystal intracavity element,” Opt. Eng. 43, 234–238 (2004).
[Crossref]

Yu-Ping Lan, Ru-Pin Pan, and Ci-Ling Pan, “Mode-hop-free fine-tuning of an external-cavity diode laser wavelength with an intracavity liquid crystal cell,” Opt. Lett. 29, 510–512 (2004).
[Crossref] [PubMed]

Pan, R. -P.

R. -P. Pan, H.-C. Tung, C. -R. Sheu, M. -J. Huang, and C. -L. Pan, “Wavelength Tunable Semiconductor Laser with a Liquid Crystal Pixel Mirror,” in Liquid Crystal Materials, Devices VIII Applications, L. C. Chien, Editors, Proceedings of SPIE, 4658, 91–100 (2002).

Pan, R-P

C. -L. Pan, S-H Tsai, R-P Pan, C-R Sheu, and S. C. Wang, “Tunable semiconductor laser with liquid crystal pixel mirror in grating-loaded external cavity,” Electron. Lett. 35, 1472–1473 (1999).
[Crossref]

Pan, Ru-Pin

Yu-Ping Lan, Ru-Pin Pan, and Ci-Ling Pan, “Mode-hop-free fine-tuning of an external-cavity diode laser wavelength with an intracavity liquid crystal cell,” Opt. Lett. 29, 510–512 (2004).
[Crossref] [PubMed]

Yu-Ping Lan, Chao-Yuan Chen, Ru-Pin Pan, and Ci-Ling Pan, “Fine tuning of a diode laser wavelength with a liquid crystal intracavity element,” Opt. Eng. 43, 234–238 (2004).
[Crossref]

Pauliat, S. G.

A. Godard, S. G. Pauliat, G. Roosen, and E. Ducloux, “Modal competition via four-wave mixing in single-mode extended-cavity semiconductor lasers,” IEEE J. Quantum Electron. 40, 970–981 (2004).
[Crossref]

A. Godard, S. G. Pauliat, G. Roosen, P. Graindorge, and P. Martin, “Side-mode gain in grating-tuned extended-cavity semiconductor lasers: investigation of stable single-mode operation conditions,” IEEE J. Quantum Electron. 38, 390–401 (2002).
[Crossref]

Pellegri, O.

M. Kauer, M. Girault, J. Leuthold, J. Honthaas, O. Pellegri, C. Goullancourt, and M. Zringibl, “16-channel digitally tunable external-cavity laser with nanosecond switching time,” IEEE Photon. Technol. Lett. 15, 371–373 (2003).
[Crossref]

Roosen, G.

A. Godard, S. G. Pauliat, G. Roosen, and E. Ducloux, “Modal competition via four-wave mixing in single-mode extended-cavity semiconductor lasers,” IEEE J. Quantum Electron. 40, 970–981 (2004).
[Crossref]

A. Godard, S. G. Pauliat, G. Roosen, P. Graindorge, and P. Martin, “Side-mode gain in grating-tuned extended-cavity semiconductor lasers: investigation of stable single-mode operation conditions,” IEEE J. Quantum Electron. 38, 390–401 (2002).
[Crossref]

Sasaki, T.

H. Hatateyama, K. Kudo, Y. Yokoyama, K. Naniwae, and T. Sasaki, “Wavelength-selectable microarray light source for wide-band DWDM applications,” IEEE J. Select. Topics Quantum. Electron. 8, 1341–1348 (2002)
[Crossref]

Sherman, K. L.

C. -K. Chan, K. L. Sherman, and M. Zirngibl, “A fast 100-channel wavelength-tunable transmitter for optical packet switching,” IEEE Photon. Technol. Lett. 13, 729–731 (2001).
[Crossref]

Sheu, C. -R.

R. -P. Pan, H.-C. Tung, C. -R. Sheu, M. -J. Huang, and C. -L. Pan, “Wavelength Tunable Semiconductor Laser with a Liquid Crystal Pixel Mirror,” in Liquid Crystal Materials, Devices VIII Applications, L. C. Chien, Editors, Proceedings of SPIE, 4658, 91–100 (2002).

Sheu, C-R

C. -L. Pan, S-H Tsai, R-P Pan, C-R Sheu, and S. C. Wang, “Tunable semiconductor laser with liquid crystal pixel mirror in grating-loaded external cavity,” Electron. Lett. 35, 1472–1473 (1999).
[Crossref]

Smarsly, B.

Struckmeier, J.

Tang, D. Y.

X. M. Zhang, A. Q. Liu, D. Y. Tang, and C. Lu, “Discrete wavelength tunable laser using microelectromechanical systems technology,” Appl. Phys. Lett. 84, 329–331 (2004).
[Crossref]

Tsai, S-H

C. -L. Pan, S-H Tsai, R-P Pan, C-R Sheu, and S. C. Wang, “Tunable semiconductor laser with liquid crystal pixel mirror in grating-loaded external cavity,” Electron. Lett. 35, 1472–1473 (1999).
[Crossref]

Tung, H.-C.

R. -P. Pan, H.-C. Tung, C. -R. Sheu, M. -J. Huang, and C. -L. Pan, “Wavelength Tunable Semiconductor Laser with a Liquid Crystal Pixel Mirror,” in Liquid Crystal Materials, Devices VIII Applications, L. C. Chien, Editors, Proceedings of SPIE, 4658, 91–100 (2002).

Wang, li

Wang, S. C.

C. -L. Pan, S-H Tsai, R-P Pan, C-R Sheu, and S. C. Wang, “Tunable semiconductor laser with liquid crystal pixel mirror in grating-loaded external cavity,” Electron. Lett. 35, 1472–1473 (1999).
[Crossref]

Wu, Shin-Tson.

Shin-Tson. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33, 1270–1274 (1986).
[Crossref] [PubMed]

Yokoyama, Y.

H. Hatateyama, K. Kudo, Y. Yokoyama, K. Naniwae, and T. Sasaki, “Wavelength-selectable microarray light source for wide-band DWDM applications,” IEEE J. Select. Topics Quantum. Electron. 8, 1341–1348 (2002)
[Crossref]

Yu, Y.

R. O’Dowd, S. O’Duill, G. Mulvihill, N. O’Gorman, and Y. Yu, “Frequency plan and wavelength switching limits for widely tunable semiconductor transmitters,” IEEE J. Select. Topics Quantum Electron. 7, 259–269 (2001).
[Crossref]

Zhang, X. M.

X. M. Zhang, A. Q. Liu, D. Y. Tang, and C. Lu, “Discrete wavelength tunable laser using microelectromechanical systems technology,” Appl. Phys. Lett. 84, 329–331 (2004).
[Crossref]

Zirngibl, M.

C. -K. Chan, K. L. Sherman, and M. Zirngibl, “A fast 100-channel wavelength-tunable transmitter for optical packet switching,” IEEE Photon. Technol. Lett. 13, 729–731 (2001).
[Crossref]

Zringibl, M.

M. Kauer, M. Girault, J. Leuthold, J. Honthaas, O. Pellegri, C. Goullancourt, and M. Zringibl, “16-channel digitally tunable external-cavity laser with nanosecond switching time,” IEEE Photon. Technol. Lett. 15, 371–373 (2003).
[Crossref]

Appl. Phys. Lett. (1)

X. M. Zhang, A. Q. Liu, D. Y. Tang, and C. Lu, “Discrete wavelength tunable laser using microelectromechanical systems technology,” Appl. Phys. Lett. 84, 329–331 (2004).
[Crossref]

Electron. Lett. (1)

C. -L. Pan, S-H Tsai, R-P Pan, C-R Sheu, and S. C. Wang, “Tunable semiconductor laser with liquid crystal pixel mirror in grating-loaded external cavity,” Electron. Lett. 35, 1472–1473 (1999).
[Crossref]

IEEE J. Quantum Electron. (2)

A. Godard, S. G. Pauliat, G. Roosen, P. Graindorge, and P. Martin, “Side-mode gain in grating-tuned extended-cavity semiconductor lasers: investigation of stable single-mode operation conditions,” IEEE J. Quantum Electron. 38, 390–401 (2002).
[Crossref]

A. Godard, S. G. Pauliat, G. Roosen, and E. Ducloux, “Modal competition via four-wave mixing in single-mode extended-cavity semiconductor lasers,” IEEE J. Quantum Electron. 40, 970–981 (2004).
[Crossref]

IEEE J. Select. Topics Quantum Electron. (1)

R. O’Dowd, S. O’Duill, G. Mulvihill, N. O’Gorman, and Y. Yu, “Frequency plan and wavelength switching limits for widely tunable semiconductor transmitters,” IEEE J. Select. Topics Quantum Electron. 7, 259–269 (2001).
[Crossref]

IEEE J. Select. Topics Quantum. Electron. (1)

H. Hatateyama, K. Kudo, Y. Yokoyama, K. Naniwae, and T. Sasaki, “Wavelength-selectable microarray light source for wide-band DWDM applications,” IEEE J. Select. Topics Quantum. Electron. 8, 1341–1348 (2002)
[Crossref]

IEEE Photon. Technol. Lett. (3)

C. -K. Chan, K. L. Sherman, and M. Zirngibl, “A fast 100-channel wavelength-tunable transmitter for optical packet switching,” IEEE Photon. Technol. Lett. 13, 729–731 (2001).
[Crossref]

M. Kauer, M. Girault, J. Leuthold, J. Honthaas, O. Pellegri, C. Goullancourt, and M. Zringibl, “16-channel digitally tunable external-cavity laser with nanosecond switching time,” IEEE Photon. Technol. Lett. 15, 371–373 (2003).
[Crossref]

M. -J. Huang, et al., “Multimode optical demultiplexer for DWDM with liquid crystal enabled functionalities,” IEEE Photon. Technol. Lett.,  16, 2254–2256 (2004).
[Crossref]

Liquid Crystals (1)

S. Brugioni, S. Faetti Pan, and R. Meucci, “Mid-infrared refractive indices of the nematic mixture,” Liquid Crystals 30, 927–930 (2003).
[Crossref]

Opt. Commun. (1)

M. Breede, et al., “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[Crossref]

Opt. Eng. (1)

Yu-Ping Lan, Chao-Yuan Chen, Ru-Pin Pan, and Ci-Ling Pan, “Fine tuning of a diode laser wavelength with a liquid crystal intracavity element,” Opt. Eng. 43, 234–238 (2004).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (1)

Shin-Tson. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33, 1270–1274 (1986).
[Crossref] [PubMed]

Other (1)

R. -P. Pan, H.-C. Tung, C. -R. Sheu, M. -J. Huang, and C. -L. Pan, “Wavelength Tunable Semiconductor Laser with a Liquid Crystal Pixel Mirror,” in Liquid Crystal Materials, Devices VIII Applications, L. C. Chien, Editors, Proceedings of SPIE, 4658, 91–100 (2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the ECDL digitally tuned with the LCPM (see inset) and fine-tuned with an intracavity NLC phase plate (see inset).

Fig. 2.
Fig. 2.

The transmission intensity of the (a) TNLC cell in the LCPM and (b) NLC phase plate.

Fig. 3.
Fig. 3.

Digitally step-tuned laser output spectrum for 20 ITU channels near the gain center.

Fig. 4.
Fig. 4.

Frequency fine-tuning of the ECDL. (a) Frequency shift observed by a scanning Fabry-Perot Interferometer (b) Measured and predicted fine-tuning range. g1: measured frequency, g2: predicted frequency

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = Δ cos θ r Δ x f lens ,
Δ l l = Δ f f ,

Metrics