Abstract

We demonstrate a metal nano-aperture GaAs vertical cavity surface emitting laser (VCSEL) for sub-wavelength optical near-filed probing, which exhibits the strong plasmon enhancement of both optical near-fields and voltage signals with forming a metal nano-particle in the nano-aperture. The threshold current is as low as 300µA, which shows a potential of nano-probing with low power consumption. We achieved the first demonstration of a plasmon enhanced VCSEL near-field probe. The spatial resolutions of the VCSEL probe with 400 nm and 200 nm apertures are 240nm and 130 nm, respectively. The enhancement factors of the optical near-field and voltage signal with a Au particle are 1.8 and 2, respectively. Our FDTD simulation shows that localized plasmon with a Au particle is very helpful for increasing optical near-field intensity and signal voltage in the VCSEL nano-probing.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. Ohtsu, Near-Field Nano/Atom Optics and Technology, (Springer-Verlag, Tokyo, 1998).
  2. A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H-J Yeh, ???High-power laser light source for near-field optics and its application to high-density optical data storage,??? Appl. Phys. Lett. 75, 1515-1517 (1999).
    [CrossRef]
  3. K. Goto, ???Proposal of ultrahigh density optical disk system using a vertical cavity surface emitting laser array,??? Jpn. J. Appl. Phys. 37, 2274-2278 (1998).
    [CrossRef]
  4. F. Koyama, K. Goto, and K. Iga, ???Design of surface emitting laser optical head for tera bytes optical memories,??? 3rd Optoelectronics and Communication Conf. (OECC'98), Tokyo, 16D1-4, 532-533 (1998).
  5. S. Shinada, F. Koyama, N. Nishiyama, M. Arai and K. Iga, ???Analysis and fabrication of microaperture GaAs-GaAlAs surface-emitting laser for near-field optical data storage,??? IEEE J. Sel. Top. Quantum Electron. 7, 365-370, (2001).
    [CrossRef]
  6. J. Hashizume, S. Shinada, F.Koyama, ???Near-field optical probing using a microaperture GaInAs/GaAs surface emitting laser,??? Jpn. J. Appl. Phys. 41, L700-L702, (2002).
    [CrossRef]
  7. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff and T. W. Ebbesen, ???Surface-plasmon-enhanced transmission through hole arrays in Cr films,??? J. Opt. Soc. Am. B 16, 1743-1748 (1999).
    [CrossRef]
  8. J. Hashizume and F. Koyama, ???Plasmon-enhancement of optical near-field of metal nanoaperture surface-emitting laser,??? Appl. Phys. Lett. 84, 3226-3228 (2004).
    [CrossRef]
  9. T. Thio, K.M. Pellerin, R.A. Linke, H.J. Lezec, and T.W. Ebbesen, ???Enhanced light transmission through a single subwavelength aperture,??? Opt. Lett. 26, 1972-1974 (2001).
    [CrossRef]
  10. J. Hashizume and F. Koyama, ???Plasmon-enhancement of optical near-field of metal nanoaperture surface-emitting laser,??? Appl. Phys. Lett. 84, 3226-3228 (2004).
    [CrossRef]
  11. S. Shinada, F. Koyama, N. Nishiyama, M. Arai, and K. Iga, ???Analysis and Fabrication of Microaperture GaAs???GaAlAs Surface-Emitting Laser for Near-Field Optical Data Storage,??? IEEE J. Sel.Top. Quantum Electron. 7, 365 (2001).
    [CrossRef]

Appl. Phys. Lett. (3)

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H-J Yeh, ???High-power laser light source for near-field optics and its application to high-density optical data storage,??? Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

J. Hashizume and F. Koyama, ???Plasmon-enhancement of optical near-field of metal nanoaperture surface-emitting laser,??? Appl. Phys. Lett. 84, 3226-3228 (2004).
[CrossRef]

J. Hashizume and F. Koyama, ???Plasmon-enhancement of optical near-field of metal nanoaperture surface-emitting laser,??? Appl. Phys. Lett. 84, 3226-3228 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Shinada, F. Koyama, N. Nishiyama, M. Arai and K. Iga, ???Analysis and fabrication of microaperture GaAs-GaAlAs surface-emitting laser for near-field optical data storage,??? IEEE J. Sel. Top. Quantum Electron. 7, 365-370, (2001).
[CrossRef]

IEEE J. Sel.Top. Quantum Electron. (1)

S. Shinada, F. Koyama, N. Nishiyama, M. Arai, and K. Iga, ???Analysis and Fabrication of Microaperture GaAs???GaAlAs Surface-Emitting Laser for Near-Field Optical Data Storage,??? IEEE J. Sel.Top. Quantum Electron. 7, 365 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (2)

J. Hashizume, S. Shinada, F.Koyama, ???Near-field optical probing using a microaperture GaInAs/GaAs surface emitting laser,??? Jpn. J. Appl. Phys. 41, L700-L702, (2002).
[CrossRef]

K. Goto, ???Proposal of ultrahigh density optical disk system using a vertical cavity surface emitting laser array,??? Jpn. J. Appl. Phys. 37, 2274-2278 (1998).
[CrossRef]

Opt. Lett. (1)

Other (2)

F. Koyama, K. Goto, and K. Iga, ???Design of surface emitting laser optical head for tera bytes optical memories,??? 3rd Optoelectronics and Communication Conf. (OECC'98), Tokyo, 16D1-4, 532-533 (1998).

M. Ohtsu, Near-Field Nano/Atom Optics and Technology, (Springer-Verlag, Tokyo, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic structure and (b) top view of a fabricated nano-aperture VCSEL with a Au particle.

Fig. 2.
Fig. 2.

Far-field output power versus injection current for a nano-aperture VCSEL with and without a Au particle.

Fig. 3.
Fig. 3.

Measurement setup for signal voltage and optical near-field intensity.

Fig. 4.
Fig. 4.

Measured surface topography (a), optical near-field intensity (b), and voltage change (c) of nano-aperture VCSEL with metal nano-particle.

Fig. 5.
Fig. 5.

Calculated spot size and relative near-field intensity as a function of the diameter of metal aperture.

Fig. 6.
Fig. 6.

Measured near-field intensity (a) and voltage signal (b) of 200 nm aperture VCSEL.

Metrics