Abstract

A swept source based polarization-sensitive Fourier domain optical coherence tomography (FDOCT) system was developed that can acquire the Stokes vectors, polarization diversity intensity and birefringence images in biological tissue by reconstruction of both the amplitude and phase terms of the interference signal. The Stokes vectors of the reflected and backscattered light from the sample were determined by processing the analytical complex fringe signals from two perpendicular polarization-detection channels. Conventional time domain OCT (TDOCT) and spectrometer based FDOCT systems are limited by the fact that the input polarization states are wavelength dependent. The swept source based FDOCT system overcomes this limitation and allows accurate setting of the input polarization states. From the Stokes vectors for two different input polarization states, the polarization diversity intensity and birefringence images were obtained.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  3. G. Hausler and M. W. Linduer, "Coherence radar and spectral radar-new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
    [CrossRef]
  4. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>.
    [CrossRef] [PubMed]
  5. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency domain imaging," Opt. Express 11, 2953-2963 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953</a>
    [CrossRef] [PubMed]
  6. R. A. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, "Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000).
    [CrossRef]
  7. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T.Bajraszewski, "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett. 29, 171-173 (2004).
    [CrossRef] [PubMed]
  8. Y.Yasuno, S.Makita, Y.Sutoh, M.Itoh, and T.Yatagai, "Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
    [CrossRef]
  9. H. Ren, Z. Ding, Y. Zhao, J. Miao, J. S. Nelson, and Z. Chen, " Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin," Opt. Lett. 27, 1702-1704 (2002).
    [CrossRef]
  10. C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, J. S. Nelson, "High-speed fiber based polarizationsensitive optical coherence tomography of in vivo human skin," Opt. Lett. 25, 1355-1357 (2000).
    [CrossRef]
  11. J. E. Roth, J. A. Kozak, S. Yazdanfar, A. M. Rollins, J. A. Izatt, �??Simplified method for polarization sensitive optical coherence tomography,�?? Opt. Lett. 26, 1069-1071 (2001).
    [CrossRef]
  12. D. P. Dav, T. Akkin, T. E. Milner, �??Polarization-maintaining fiber-based optical low coherence reflectometer for characterization and ranging of birefringence,�?? Opt. Lett. 28, 1775-1777 (2003).
    [CrossRef]

J. Biomed. Opt. (1)

G. Hausler and M. W. Linduer, "Coherence radar and spectral radar-new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Opt. Express (2)

Opt. Lett. (7)

R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T.Bajraszewski, "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett. 29, 171-173 (2004).
[CrossRef] [PubMed]

D. P. Dav, T. Akkin, T. E. Milner, �??Polarization-maintaining fiber-based optical low coherence reflectometer for characterization and ranging of birefringence,�?? Opt. Lett. 28, 1775-1777 (2003).
[CrossRef]

R. A. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, "Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000).
[CrossRef]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, J. S. Nelson, "High-speed fiber based polarizationsensitive optical coherence tomography of in vivo human skin," Opt. Lett. 25, 1355-1357 (2000).
[CrossRef]

J. E. Roth, J. A. Kozak, S. Yazdanfar, A. M. Rollins, J. A. Izatt, �??Simplified method for polarization sensitive optical coherence tomography,�?? Opt. Lett. 26, 1069-1071 (2001).
[CrossRef]

H. Ren, Z. Ding, Y. Zhao, J. Miao, J. S. Nelson, and Z. Chen, " Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin," Opt. Lett. 27, 1702-1704 (2002).
[CrossRef]

Y.Yasuno, S.Makita, Y.Sutoh, M.Itoh, and T.Yatagai, "Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the FDOCT system. Pol. Mod.: polarization modulator; Phase Mod.: phase modulator; Colli.: collimator; Atte.: adjustable neutral density attenuator; FFP: 100 GHz fiber Fabry-Perot interferometer; PC: polarization controller; PBS: polarization beam splitter; D1, D2, D3: photodetectors.

Fig. 2.
Fig. 2.

Synchronizing time clock diagram for the FDOCT system. Channel 1 is the sinusoidal signal to drive the swept source. Channel 2 is the signal used to trigger data acquisition. Channel 3 is the drive signal to control the polarization modulator.

Fig. 3.
Fig. 3.

Measured phase retardation versus actual phase retardation for different wave plates. The round-trip retardation values of the wave plates for measurement are 55.5°, 77°, 90°, 101.6° and 151.9°, respectively. The solid line represents the actual phase retardation and the points represent the measured phase retardation.

Fig. 4.
Fig. 4.

Images of the Stokes vectors, polarization diversity intensity and phase retardation in rabbit tendon. (a): Stokes vector images corresponding to the two input polarization states; (b): polarization diversity intensity image; and (c): phase retardation image.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

H ( v ) = { 0 v < 0 1 v 0
I ( z ) = S ˜ H ( z ) S ˜ H * ( z ) + S ˜ V ( z ) S ˜ V * ( z )
Q ( z ) = S ˜ H ( z ) S ˜ H * ( z ) + S ˜ V ( z ) S ˜ V * ( z )
U ( z ) = 2 Re [ S ˜ H * ( z ) S ˜ V ( z ) ]
V ( z ) = 2 Im [ S ˜ H * ( z ) S ˜ V ( z ) ]

Metrics