Abstract

Recently, we developed a phase resolved polarization sensitive OCT system based on transversal scanning. This system was now improved and adapted for retinal imaging in vivo. We accelerated the image acquisition speed by a factor of 10 and adapted the system for light sources emitting at 820nm. The improved instrument records 1000 transversal lines per second. Two different scanning modes enable either the acquisition of high resolution B-scan images containing 1600×500 pixels in 500ms or the recording of 3D data sets by C-scan mode imaging. This allows acquiring a 3D-data set containing 1000×100×100 pixels in 10 seconds. We present polarization sensitive B-scan images and to the best of our knowledge, the first 3D-data sets of retardation and fast axis orientation of fovea and optic nerve head region in vivo. The polarizing and birefringence properties of different retinal layers: retinal pigment epithelium, Henle’s fiber layer, and retinal nerve fiber layer are studied.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. B. E. Bouma, G. J. Tearney, Handbook of Optical Coherence Tomography, (Marcel Dekker, New York 2002).
  3. A. F. Fercher, C. K. Hitzenberger, �??Optical coherence tomography�??, Chapter 4 in Progress in Optics 44, Elsevier Science B.V. (2002)
  4. C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, �??Imaging of macular diseases with optical coherence tomography,�?? Ophthalmology 102, 217-229 (1995)
    [PubMed]
  5. P. Massin, C. Allouch, B. Haouchine, F. Metge, M. Paques, L. Tangui, A. Erginay and A. Gaudric, �??Optical coherence tomography of idiopathic maclular epiretinal membranes before and after surgery,�?? Am. J. Ophthalmology 130, 732-739 (2000)
    [CrossRef]
  6. W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, A. F. Fercher, �??Enhanced visualization of macular pathology with use of ultrahigh-resolution optical coherence tomography,�?? Arch-Ophthalmology 121, 695-706 (2003)
    [CrossRef]
  7. C. K. Hitzenberger, P. Trost, P. W. Lo, Q. Zhou. �??Three dimensional imaging of the human retina by high speed optical coherence tomography,�?? Opt. Express 11, 2753-2761 (2003) <a href= " http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2753">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2753</a>
    [CrossRef] [PubMed]
  8. M. Wojtkowski, T. Bajraszewski, P. Targowski, A. Kowalczyk, �??Real-time in vivo imaging by high-speed spectral optical coherence tomography,�?? Opt. Lett. 28, 1745-1747 (2003)
    [CrossRef] [PubMed]
  9. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, J. F. de Boer, �??In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,�?? Opt. Lett. 29, 480-482 (2004)
    [CrossRef] [PubMed]
  10. Leitgeb R. A., Drexler W., Unterhuber A., Hermann B., Bajraszewski T., Le T., Stingl A., Fercher A. F., �??Ultrahigh resolution Fourier domain OCT,�?? Opt. Express 12, 2156-2165 (2004), <a href="http://www.opticsinfobase.org/abstract.cfm?"id=79930">http://www.opticsinfobase.org/abstract.cfm?id=79930<a>
    [CrossRef] [PubMed]
  11. H. B. klein Brink and G. J. van Blockland, �??Birefringence of the human foveal area assessed in vivo with Mueller-matrix ellipsometry,�?? J. Opt. Soc. Am. A 5, 49-57 (1988)
    [CrossRef]
  12. A. W. Dreher, K. Reiter and R. N. Weinreb, �??Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer,�?? Appl. Opti. 31, 3730-3735 (1992)
    [CrossRef]
  13. M. R. Hee, D. Huang, E. A. Swanson and J. G. Fujimoto, �??Polarization sensitive low coherence reflectometer for birefringence characterization and ranging,�?? J. Opt. Soc. Am. B 9, 903-908 (1992)
    [CrossRef]
  14. J. F. De Boer, T. E. Milner, M. J. C. van Gemert and J. S. Nelson, �??Two-dimensional birefringence imaging in biological tissue by polarization sensitive optical coherence tomography,�?? Opt. Lett. 22, 934-936 (1997)
    [CrossRef] [PubMed]
  15. M. J. Everett, K. Schoenenberger, B. W. Colston, Jr., L. B. Da Silva, �??Birefringence characterization of biological tissue by use of optical coherence tomography,�?? Opt. Lett. 23, 228-230 (1998)
    [CrossRef]
  16. B. H. Park, M. C. Pierce, B. Cense, J. F. de Boer, �??Real-time multi-functional optical coherence tomography, �?? Opt. Express 11, 782-793 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-782">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-782</a>
    [CrossRef] [PubMed]
  17. M. Pircher, E. Götzinger, R. Leitgeb, and C. K. Hitzenberger: �??Three dimensional polarization sensitive OCT of human skin in vivo,�?? Opt. Express 12, 3236-3244 (2004) <a href= " http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3236">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3236</a>
    [CrossRef] [PubMed]
  18. E. Goetzinger, M. Pircher, M. Sticker, A. F. Fercher, C. K. Hitzenberger, �??Measurement and imaging of birefringent properties of the human cornea with phase-resolved polarization-sensitive optical coherence tomography,�?? J. Biomed. Opt. 9, 94-102 (2004)
    [CrossRef]
  19. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce and J. F. de Boer, �??In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization sensitive optical coherence tomography,�?? Opt. Lett. 27, 1610-1612 (2002)
    [CrossRef]
  20. M.G. Ducros, J. D. Marsack, H.G. Rylander III, S. L. Thomsen, T. E. Milner; �??Primate retina imaging with polarization sensitive optical coherence tomography,�?? J. Opt. Soc. Am. A 18, 2945-2956 (2001)
    [CrossRef]
  21. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce and J. F. de Boer, �??Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization sensitive optical coherence tomography,�?? Invest. Ophthalmol. Vis. Sci. 45, 2606-2612 (2004)
    [CrossRef] [PubMed]
  22. A. G. Podoleanu, G. M. Dobre, D. A. Jackson, �??En-face coherence imaging using galvanometer scanner modulation, �?? Opt. Lett. 23, 147-149 (1998)
    [CrossRef]
  23. A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. Fitzke, �??Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry, �??J. Biomed. Opt. 3, 12-20 (1998)
    [CrossRef] [PubMed]
  24. R. G. Cucu, A. G. Podoleanu, R. B. Rosen, A. C. Boxer, D. A. Jackson, �??En face polarization sensitive optical coherence tomography,�?? Proc. SPIE 5140, 113-119 /2003)
    [CrossRef]
  25. A. G. Podoleanu, R. G. Cucu, R. B. Rosen, �??In vivo T-scan based polarization sensitive OCT of the optic nerve,�?? Proc. SPIE 5316, 300-305 (2004)
    [CrossRef]
  26. M. Pircher, E. Goetzinger, R. Leitgeb and C. K. Hitzenberger, �??Transversal phase resolved polarization sensitive optical coherence tomography,�?? J. Phys. Med. Biol. 49, 1257-1263 (2004)
    [CrossRef]
  27. C. K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher and A. F. Fercher, �??Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,�?? Opt. Express 9, 780-790 (2001) <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-780">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-780</a>
    [CrossRef] [PubMed]
  28. American National Standards Institute: �??American National Standard for Safe Use of Lasers,�?? ANSI Z 136.1-2000. Orlando, Laser Institute of America, 45-49 (2000)
  29. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kaertner, J. S. Schuhman and J. G. Fujimoto, �??Ultrahigh-resolution ophthalmic optical coherence tomography,�?? Nature Med. 7, 502-507 (2001)
    [CrossRef] [PubMed]
  30. A. Baumgartner, C. K. Hitzenberger, H. Sattmann, W. Drexler and A. F. Fercher, �??Signal and resolution enhancements in dual beam optical coherence tomography of the human eye,�?? J. Biomed. Opt. 3, 45-54 (1998)
    [CrossRef] [PubMed]
  31. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, J. F. de Boer, �??Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,�?? Opt. Express 12. 2435-2447 (2004) <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435</a>
    [CrossRef] [PubMed]
  32. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalcyk, J. S. Duker, �??Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,�?? Opt. Express 12, 2404-2422 (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404</a>
    [CrossRef] [PubMed]
  33. Q. Zhou and R. N. Weinreb, �??Individualized compensation of anterior segment birefringence during laser polarimetry,�?? Invest. Ophthalmol. Vis. Sci. 43, 2221-2228 (2002)
    [PubMed]
  34. J. M. Schmitt, S. H. Xiang, �??Cross-polarized backscatter in optical coherence tomography of biological tissue,�?? Opt. Lett. 23, 1060-2062 (1998)
    [CrossRef]
  35. M. J. Greaney, D. C. Hoffman, D. F. Garway-Heath, M. Nakla, A. L. Coleman and J. Caprioli, �??Comparison of optic nerve imaging methods to distinguish normal eyes from those with Glaucoma,�?? Invest. Ophthalmol. Vis. Sci. 43, 140-145 (2002)
    [PubMed]
  36. R. W. Knighton and X. R. Huang, �??Linear birefringence of the central human cornea,�?? Invest. Ophthalmol. Vis. Sci. 43, 82-86 (2002)
    [PubMed]
  37. H. B. klein Brink and G. J. van Blockland, �??Birefringence of the human foveal area assessed in vivo with Mueller matrix ellipsometry,�?? J. Opt. Soc. Am. A. 5, 49-57 (1988)
    [CrossRef]

Am. J. Ophthalmology (1)

P. Massin, C. Allouch, B. Haouchine, F. Metge, M. Paques, L. Tangui, A. Erginay and A. Gaudric, �??Optical coherence tomography of idiopathic maclular epiretinal membranes before and after surgery,�?? Am. J. Ophthalmology 130, 732-739 (2000)
[CrossRef]

Appl. Opti. (1)

A. W. Dreher, K. Reiter and R. N. Weinreb, �??Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer,�?? Appl. Opti. 31, 3730-3735 (1992)
[CrossRef]

Arch-Ophthalmology (1)

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, A. F. Fercher, �??Enhanced visualization of macular pathology with use of ultrahigh-resolution optical coherence tomography,�?? Arch-Ophthalmology 121, 695-706 (2003)
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (3)

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce and J. F. de Boer, �??Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization sensitive optical coherence tomography,�?? Invest. Ophthalmol. Vis. Sci. 45, 2606-2612 (2004)
[CrossRef] [PubMed]

Q. Zhou and R. N. Weinreb, �??Individualized compensation of anterior segment birefringence during laser polarimetry,�?? Invest. Ophthalmol. Vis. Sci. 43, 2221-2228 (2002)
[PubMed]

M. J. Greaney, D. C. Hoffman, D. F. Garway-Heath, M. Nakla, A. L. Coleman and J. Caprioli, �??Comparison of optic nerve imaging methods to distinguish normal eyes from those with Glaucoma,�?? Invest. Ophthalmol. Vis. Sci. 43, 140-145 (2002)
[PubMed]

J. Biomed. Opt. (3)

A. Baumgartner, C. K. Hitzenberger, H. Sattmann, W. Drexler and A. F. Fercher, �??Signal and resolution enhancements in dual beam optical coherence tomography of the human eye,�?? J. Biomed. Opt. 3, 45-54 (1998)
[CrossRef] [PubMed]

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. Fitzke, �??Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry, �??J. Biomed. Opt. 3, 12-20 (1998)
[CrossRef] [PubMed]

E. Goetzinger, M. Pircher, M. Sticker, A. F. Fercher, C. K. Hitzenberger, �??Measurement and imaging of birefringent properties of the human cornea with phase-resolved polarization-sensitive optical coherence tomography,�?? J. Biomed. Opt. 9, 94-102 (2004)
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. A. (1)

H. B. klein Brink and G. J. van Blockland, �??Birefringence of the human foveal area assessed in vivo with Mueller matrix ellipsometry,�?? J. Opt. Soc. Am. A. 5, 49-57 (1988)
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Med. Biol. (1)

M. Pircher, E. Goetzinger, R. Leitgeb and C. K. Hitzenberger, �??Transversal phase resolved polarization sensitive optical coherence tomography,�?? J. Phys. Med. Biol. 49, 1257-1263 (2004)
[CrossRef]

Laser Institute of America (1)

American National Standards Institute: �??American National Standard for Safe Use of Lasers,�?? ANSI Z 136.1-2000. Orlando, Laser Institute of America, 45-49 (2000)

Nature Med. (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kaertner, J. S. Schuhman and J. G. Fujimoto, �??Ultrahigh-resolution ophthalmic optical coherence tomography,�?? Nature Med. 7, 502-507 (2001)
[CrossRef] [PubMed]

Ophthalmol. Vis. Sci. (1)

R. W. Knighton and X. R. Huang, �??Linear birefringence of the central human cornea,�?? Invest. Ophthalmol. Vis. Sci. 43, 82-86 (2002)
[PubMed]

Ophthalmology (1)

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, �??Imaging of macular diseases with optical coherence tomography,�?? Ophthalmology 102, 217-229 (1995)
[PubMed]

Opt. Express (7)

Leitgeb R. A., Drexler W., Unterhuber A., Hermann B., Bajraszewski T., Le T., Stingl A., Fercher A. F., �??Ultrahigh resolution Fourier domain OCT,�?? Opt. Express 12, 2156-2165 (2004), <a href="http://www.opticsinfobase.org/abstract.cfm?"id=79930">http://www.opticsinfobase.org/abstract.cfm?id=79930<a>
[CrossRef] [PubMed]

C. K. Hitzenberger, P. Trost, P. W. Lo, Q. Zhou. �??Three dimensional imaging of the human retina by high speed optical coherence tomography,�?? Opt. Express 11, 2753-2761 (2003) <a href= " http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2753">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2753</a>
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, J. F. de Boer, �??Real-time multi-functional optical coherence tomography, �?? Opt. Express 11, 782-793 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-782">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-782</a>
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, and C. K. Hitzenberger: �??Three dimensional polarization sensitive OCT of human skin in vivo,�?? Opt. Express 12, 3236-3244 (2004) <a href= " http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3236">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3236</a>
[CrossRef] [PubMed]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, J. F. de Boer, �??Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,�?? Opt. Express 12. 2435-2447 (2004) <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435</a>
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalcyk, J. S. Duker, �??Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,�?? Opt. Express 12, 2404-2422 (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404</a>
[CrossRef] [PubMed]

C. K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher and A. F. Fercher, �??Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,�?? Opt. Express 9, 780-790 (2001) <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-780">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-780</a>
[CrossRef] [PubMed]

Opt. Lett. (7)

Proc. SPIE (2)

R. G. Cucu, A. G. Podoleanu, R. B. Rosen, A. C. Boxer, D. A. Jackson, �??En face polarization sensitive optical coherence tomography,�?? Proc. SPIE 5140, 113-119 /2003)
[CrossRef]

A. G. Podoleanu, R. G. Cucu, R. B. Rosen, �??In vivo T-scan based polarization sensitive OCT of the optic nerve,�?? Proc. SPIE 5316, 300-305 (2004)
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other (2)

B. E. Bouma, G. J. Tearney, Handbook of Optical Coherence Tomography, (Marcel Dekker, New York 2002).

A. F. Fercher, C. K. Hitzenberger, �??Optical coherence tomography�??, Chapter 4 in Progress in Optics 44, Elsevier Science B.V. (2002)

Supplementary Material (2)

» Media 1: MOV (751 KB)     
» Media 2: MOV (677 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

B-scan of human fovea in vivo (~5×1mm2) (a) intensity (the layers are labeled as follows: ILM, internal limiting membrane; NFL, nerve fiber layer; GCL, ganglion cell layer; IPL and OPL, inner and outer plexiform layer; INL and ONL, inner and outer nuclear layer; HF, Henle fiber layer; ELM, external limiting membrane; IPRL, interface between inner and outer segments of photoreceptor layer; RPE, retinal pigment epithelium), (b) retardation (c.f., color bar; δ=0° to 90°), (c) cumulative fast axis orientation (c.f., color bar; Θ=0° to 180°), (d) (e) (f) enlarged sections (x2) of (a), (b) and (c) (to avoid erroneous birefringence data values below a certain intensity threshold are displayed in grey in (b) (c) (e) (f))

Fig. 2.
Fig. 2.

Frame no.34 of movie showing several en-face images of a 3D data set of a human fovea region in vivo at different depth positions. Upper left: intensity image of a B-scan (x-z) (black line corresponds to the depth position of the en face images), upper right: en face (x-y) intensity image, lower left: en face cumulative fast axis orientation image (c.f. color bar; Θ=0° to 180°), lower right: en face retardation image (c.f. color bar; δ=0° to 90°) The black lines correspond to the B-scan position (size 0.8MB) (The data set consists of a volume of 5×5×1.5mm3)

Fig. 3.
Fig. 3.

Retardation (a) and cumulative fast axis orientation (b) at the surface of the fovea region. Each image covers an area of 5×5mm2. Histogram of retardation (c) and fast axis orientation (d) values obtained from (a) and (b), respectively.

Fig. 4.
Fig. 4.

Retardation (a) and cumulative fast axis orientation (b) at the IPRL of the fovea region (each image covers an area of 5×5mm2), and simulated retardation (c) and fast axis orientation (d) (S superior; I inferior; T temporal; N nasal)

Fig. 5.
Fig. 5.

Frame no.21 of movie showing several en-face images of a 3D data set of a human retinal nerve head region in vivo at different depth positions. Upper left: (B-scan) intensity image (x-z) (black line corresponds to the depth position of the en face images), upper right: en face (x-y) intensity image, lower left: en face cumulative fast axis orientation image (c.f. color bar; Θ=0° to 180°), lower right: en face retardation image (c.f. color bar; δ=0° to 90°). The black lines correspond to the B-scan position (size 0.7MB). (The data set comprises a volume of 5×5×2.5mm3)

Fig. 6.
Fig. 6.

Retardation (a) and cumulative fast axis orientation (b) at the top layer of the RPE of the nerve head region (each image covers an area of ~5×5mm2), and simulated retardation (c) and fast axis orientation (d) (S superior; I inferior; T temporal; N nasal)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R ( z ) ~ A 1 2 ( z ) + A 2 2 ( z ) ,
δ ( z ) = arctan ( A 2 ( z ) A 1 ( z ) ) .
θ = 180 ° Δ Φ 2 .
cos ( δ ) = cos ( δ 1 ) cos ( δ 2 ) sin ( δ 1 ) sin ( δ 2 ) cos ( 2 ( θ 2 θ 1 ) ) .
M ( δ , θ ) = ( cos 2 ( θ ) + sin 2 ( θ ) exp ( i δ ) cos ( θ ) sin ( θ ) ( 1 exp ( i δ ) ) cos ( θ ) sin ( θ ) ( 1 exp ( i δ ) ) cos 2 ( θ ) exp ( i δ ) + sin 2 ( θ ) )
E s = 1 2 M qwp M A M H R M H M A M qwp ( 0 1 ) ,

Metrics