Abstract

We investigate bidirectional optical wave propagations in a dual-pumped erbium doped fiber ring laser without isolator, and observe optical bistabillity behaviors. Consequently, we propose and construct a NOLM-NALM fiber ring laser to demonstrate and exploit this bidirectional optical bistability phenomenon in optical switching by introducing two tunable variable ratio couplers in the system. Numerical analyses based on the proposed laser structure have also been demonstrated corroborated with the experimental results.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. M. Oh and D. Lee, �??Strong Optical Bistability in a Simple L-Band Tunable Erbium-Doped Fiber Ring Laser,�?? J. Quantum Electron. 40, 374-377 (2004)
    [CrossRef]
  2. P. P. Banerjee, Nonlinear Optics �?? Theory, Numerical Modeling and Applications, (Marcel Dekker, Inc., USA, 2004), Chapter 5
  3. Y. Shi, M. Sejka and O. Poulsen, �??A unidirectional Er3+ -doped fiber ring laser without isolator,�?? IEEE Photon. Technol. Lett. 7, 290-292 (1995)
    [CrossRef]
  4. A.E. Siegman, Lasers, (Mill Valley, CA: University Science Books, 1986)
  5. L. Luo, T. J. Tee and P. L. Chu, �??Bistability of erbium doped fiber laser,�?? Opt. Commun. 146, 151-157 (1998)
    [CrossRef]
  6. N. J. Doran and D. Wood, �??Nonlinear-optical loop mirror,�?? Optics Letters 13, 56-58 (1988)
    [CrossRef] [PubMed]
  7. M. E. Fermann, F. Haberl, M. Hofer and H. Hochreiter, �??Nonlinear amplifying loop mirror,�?? Opt. Lett. 15, 752-754 (1990)
    [CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (1)

Y. Shi, M. Sejka and O. Poulsen, �??A unidirectional Er3+ -doped fiber ring laser without isolator,�?? IEEE Photon. Technol. Lett. 7, 290-292 (1995)
[CrossRef]

J. Quantum Electron. (1)

J. M. Oh and D. Lee, �??Strong Optical Bistability in a Simple L-Band Tunable Erbium-Doped Fiber Ring Laser,�?? J. Quantum Electron. 40, 374-377 (2004)
[CrossRef]

Opt. Commun. (1)

L. Luo, T. J. Tee and P. L. Chu, �??Bistability of erbium doped fiber laser,�?? Opt. Commun. 146, 151-157 (1998)
[CrossRef]

Opt. Lett. (1)

Optics Letters (1)

N. J. Doran and D. Wood, �??Nonlinear-optical loop mirror,�?? Optics Letters 13, 56-58 (1988)
[CrossRef] [PubMed]

Other (2)

P. P. Banerjee, Nonlinear Optics �?? Theory, Numerical Modeling and Applications, (Marcel Dekker, Inc., USA, 2004), Chapter 5

A.E. Siegman, Lasers, (Mill Valley, CA: University Science Books, 1986)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Nonlinear optical loop mirror (NOLM); (b) Nonlinear amplifying loop mirror (NALM)

Fig. 2.
Fig. 2.

Experimental setup for (a) dual-pumped erbium doped fiber ring laser; (b) NOLM-NALM fiber laser

Fig. 3.
Fig. 3.

(a) ASE spectrum of the laser; (b) Lasing characteristics in both directions (upper trace: Output 2, lower trace: Output1)

Fig. 4.
Fig. 4.

Hysteresis loops obtained from the EDFRL for 980 nm pump current=100 mA, (a) log scale; (b) linear scale

Fig. 5.
Fig. 5.

Hysteresis loops obtained from the EDFRL for 980 nm pump current=200 mA, (a) log scale; (b) linear scale

Fig. 6.
Fig. 6.

Hysteresis loop observed while changing the coupling ratio of one VRC while maintaining that of the other, when operating at high pump current.

Fig. 7.
Fig. 7.

(a) Experimental results for Output1 (Op1) and Output2 (Op2) for various coupling ratios (k1 — coupling ratio of VRC1, k2 — coupling ratio of VRC2); (b) Simulation results for transmisivities of Output1 (solid line) and Output2 (dotted line) for various coupling ratios of VRC1 and VRC2

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E 3 = T 0 n E 1 + T 1 n E 2
E 4 = T 0 n E 2 + T 1 n E 1
E o2 NOLM 2 = E 1 2 ( 1 2 κ ( 1 κ ) { 1 + cos [ ( 1 2 κ ) 2 π n 2 E 1 2 L λ ] } )
E o2 NOLM 2 = G E 1 2 ( 1 2 κ ( 1 κ ) { 1 + cos [ ( 1 κ G κ ) 2 π n 2 E 1 2 L λ ] } )

Metrics