Abstract

We present a new and simple method to obtain ultrasound modulated optical tomography images in thick biological tissues with the use of a photorefractive crystal. The technique offers the advantage of spatially adapting the output speckle wavefront by analysing the signal diffracted by the interference pattern between this output field and a reference beam, recorded inside the photorefractive crystal. Averaging out due to random phases of the speckle grains vanishes, and we can use a fast single photodetector to measure the ultrasound modulated optical contrast. This technique offers a promising way to make direct measurements within the decorrelation time scale of living tissues.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical phase conjugation in Nd:YVO4 for acousto-optic detection in scattering media

B. Jayet, J.-P. Huignard, and F. Ramaz
Opt. Lett. 38(8) 1256-1258 (2013)

Ultrasound-modulated optical imaging using a powerful long pulse laser

Guy Rousseau, Alain Blouin, and Jean-Pierre Monchalin
Opt. Express 16(17) 12577-12590 (2008)

Theoretical description of the photorefractive detection of the ultrasound modulated photons in scattering media

M. Gross, F. Ramaz, B.C. Forget, M. Atlan, A.C. Boccara, P. Delaye, and G. Roosen
Opt. Express 13(18) 7097-7112 (2005)

References

  • View by:
  • |
  • |
  • |

  1. L. Sui, T. Murray, G. Maguluri, A. Nieva, F. Bloningen, C. DiMarzio, and R. A. Roy, “Enhanced detection of acousto-photonic scattering using a photorefractive crystal,” in Photons Plus Ultrasound : Imaging and Sensing, A. A. Oraevsky and L. V. Wang, eds., Proc. SPIE5320, 164–171 (2004).
  2. D. Dolfi and F. Micheron, “Imaging process and system for transillumination with photon frequency marking,” International Patent WO 98/00278(1989).
  3. S. Lévêque, A. Boccara, M. Lebec, and H. Saint-Jalmes, “Ultrasonic tagging of phton paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181 (1999).
    [Crossref]
  4. A. Lev and B. Sfez, “direct, noninvasive detection of photon density in turbid media,” Opt. Lett. 27, 473–75 (2002).
    [Crossref]
  5. A. Lev and B. Sfez, “In vivo demonstration of ultrasound-modulated light technique,” J. Opt. Soc. Am. A 20, 2347–2354 (2003).
    [Crossref]
  6. J. Li and L. Wang, “Methods for parallele-detection-based ultrasound-modulated optical tomography,” Appl. Opt. 41, 2079–2084 (2002).
    [Crossref] [PubMed]
  7. S. Lévêque-Fort, “Three-dimensional Acousto-Optic Imaging in Biological Tissues with Parallel Signal Processing,” Appl. Opt. 40, 1029–1036 (2000).
    [Crossref]
  8. J. Li, S. Sakadzic, G. Ku, and L. Wang, “Transmission- and side-detection configurations in ultrasound modulated optical tomography of thick biological tissues,” Appl. Opt. 42, 4088–94 (2003).
    [Crossref] [PubMed]
  9. M. Gross, P. Goy, and M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons un ultrasound-modulated optical imaging,” Opt. Lett. 28, 2482–84 (2003).
    [Crossref] [PubMed]
  10. P. Delaye, A. Blouin, D. Drolet, L. de Montmorillon, G. Roosen, and J. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied DC field,” J. Opt. Soc. Am. B 14, 1723–34 (1997).
    [Crossref]
  11. T. C. Hale and K. Telschow, “Optical lock-in detection using photorefractive frequency domain processing,” Appl. Phys. Lett. 69, 2632–34 (1996).
    [Crossref]
  12. F.M. Davidson and C.T. Field, “Coherent homodyne optical communication recievers with photorefractive optical beam combiners,” IEEE J. Lightwave. Technol. 12, 1207–1223 (1994).
    [Crossref]
  13. A. Yariv, Quantum electronics, 3rd ed. (John Wiley and Sons inc, 1989), 516–29.
  14. B. Campagne, A. Blouin, L. Pujol, and J. Montchalin, “Compact and fast response ultrasonic detection device based on two-wave mixing in a gallium arsenide photorefractive crystal,” Rev. Sc. Int. 72, 2478–82 (2001).
  15. F. Leclerc, L. Collot, and M. Gross, “Numerical heterodyne holography using 2D photo-detector arrays,” Opt. Lett. 25, 716–18 (2000).

2003 (3)

2002 (2)

2001 (1)

B. Campagne, A. Blouin, L. Pujol, and J. Montchalin, “Compact and fast response ultrasonic detection device based on two-wave mixing in a gallium arsenide photorefractive crystal,” Rev. Sc. Int. 72, 2478–82 (2001).

2000 (2)

1999 (1)

1997 (1)

1996 (1)

T. C. Hale and K. Telschow, “Optical lock-in detection using photorefractive frequency domain processing,” Appl. Phys. Lett. 69, 2632–34 (1996).
[Crossref]

1994 (1)

F.M. Davidson and C.T. Field, “Coherent homodyne optical communication recievers with photorefractive optical beam combiners,” IEEE J. Lightwave. Technol. 12, 1207–1223 (1994).
[Crossref]

Al-Koussa, M.

Bloningen, F.

L. Sui, T. Murray, G. Maguluri, A. Nieva, F. Bloningen, C. DiMarzio, and R. A. Roy, “Enhanced detection of acousto-photonic scattering using a photorefractive crystal,” in Photons Plus Ultrasound : Imaging and Sensing, A. A. Oraevsky and L. V. Wang, eds., Proc. SPIE5320, 164–171 (2004).

Blouin, A.

B. Campagne, A. Blouin, L. Pujol, and J. Montchalin, “Compact and fast response ultrasonic detection device based on two-wave mixing in a gallium arsenide photorefractive crystal,” Rev. Sc. Int. 72, 2478–82 (2001).

P. Delaye, A. Blouin, D. Drolet, L. de Montmorillon, G. Roosen, and J. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied DC field,” J. Opt. Soc. Am. B 14, 1723–34 (1997).
[Crossref]

Boccara, A.

Campagne, B.

B. Campagne, A. Blouin, L. Pujol, and J. Montchalin, “Compact and fast response ultrasonic detection device based on two-wave mixing in a gallium arsenide photorefractive crystal,” Rev. Sc. Int. 72, 2478–82 (2001).

Collot, L.

Davidson, F.M.

F.M. Davidson and C.T. Field, “Coherent homodyne optical communication recievers with photorefractive optical beam combiners,” IEEE J. Lightwave. Technol. 12, 1207–1223 (1994).
[Crossref]

de Montmorillon, L.

Delaye, P.

DiMarzio, C.

L. Sui, T. Murray, G. Maguluri, A. Nieva, F. Bloningen, C. DiMarzio, and R. A. Roy, “Enhanced detection of acousto-photonic scattering using a photorefractive crystal,” in Photons Plus Ultrasound : Imaging and Sensing, A. A. Oraevsky and L. V. Wang, eds., Proc. SPIE5320, 164–171 (2004).

Dolfi, D.

D. Dolfi and F. Micheron, “Imaging process and system for transillumination with photon frequency marking,” International Patent WO 98/00278(1989).

Drolet, D.

Field, C.T.

F.M. Davidson and C.T. Field, “Coherent homodyne optical communication recievers with photorefractive optical beam combiners,” IEEE J. Lightwave. Technol. 12, 1207–1223 (1994).
[Crossref]

Goy, P.

Gross, M.

Hale, T. C.

T. C. Hale and K. Telschow, “Optical lock-in detection using photorefractive frequency domain processing,” Appl. Phys. Lett. 69, 2632–34 (1996).
[Crossref]

Ku, G.

Lebec, M.

Leclerc, F.

Lev, A.

Lévêque, S.

Lévêque-Fort, S.

Li, J.

Maguluri, G.

L. Sui, T. Murray, G. Maguluri, A. Nieva, F. Bloningen, C. DiMarzio, and R. A. Roy, “Enhanced detection of acousto-photonic scattering using a photorefractive crystal,” in Photons Plus Ultrasound : Imaging and Sensing, A. A. Oraevsky and L. V. Wang, eds., Proc. SPIE5320, 164–171 (2004).

Micheron, F.

D. Dolfi and F. Micheron, “Imaging process and system for transillumination with photon frequency marking,” International Patent WO 98/00278(1989).

Monchalin, J.

Montchalin, J.

B. Campagne, A. Blouin, L. Pujol, and J. Montchalin, “Compact and fast response ultrasonic detection device based on two-wave mixing in a gallium arsenide photorefractive crystal,” Rev. Sc. Int. 72, 2478–82 (2001).

Murray, T.

L. Sui, T. Murray, G. Maguluri, A. Nieva, F. Bloningen, C. DiMarzio, and R. A. Roy, “Enhanced detection of acousto-photonic scattering using a photorefractive crystal,” in Photons Plus Ultrasound : Imaging and Sensing, A. A. Oraevsky and L. V. Wang, eds., Proc. SPIE5320, 164–171 (2004).

Nieva, A.

L. Sui, T. Murray, G. Maguluri, A. Nieva, F. Bloningen, C. DiMarzio, and R. A. Roy, “Enhanced detection of acousto-photonic scattering using a photorefractive crystal,” in Photons Plus Ultrasound : Imaging and Sensing, A. A. Oraevsky and L. V. Wang, eds., Proc. SPIE5320, 164–171 (2004).

Pujol, L.

B. Campagne, A. Blouin, L. Pujol, and J. Montchalin, “Compact and fast response ultrasonic detection device based on two-wave mixing in a gallium arsenide photorefractive crystal,” Rev. Sc. Int. 72, 2478–82 (2001).

Roosen, G.

Roy, R. A.

L. Sui, T. Murray, G. Maguluri, A. Nieva, F. Bloningen, C. DiMarzio, and R. A. Roy, “Enhanced detection of acousto-photonic scattering using a photorefractive crystal,” in Photons Plus Ultrasound : Imaging and Sensing, A. A. Oraevsky and L. V. Wang, eds., Proc. SPIE5320, 164–171 (2004).

Saint-Jalmes, H.

Sakadzic, S.

Sfez, B.

Sui, L.

L. Sui, T. Murray, G. Maguluri, A. Nieva, F. Bloningen, C. DiMarzio, and R. A. Roy, “Enhanced detection of acousto-photonic scattering using a photorefractive crystal,” in Photons Plus Ultrasound : Imaging and Sensing, A. A. Oraevsky and L. V. Wang, eds., Proc. SPIE5320, 164–171 (2004).

Telschow, K.

T. C. Hale and K. Telschow, “Optical lock-in detection using photorefractive frequency domain processing,” Appl. Phys. Lett. 69, 2632–34 (1996).
[Crossref]

Wang, L.

Yariv, A.

A. Yariv, Quantum electronics, 3rd ed. (John Wiley and Sons inc, 1989), 516–29.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

T. C. Hale and K. Telschow, “Optical lock-in detection using photorefractive frequency domain processing,” Appl. Phys. Lett. 69, 2632–34 (1996).
[Crossref]

IEEE J. Lightwave. Technol. (1)

F.M. Davidson and C.T. Field, “Coherent homodyne optical communication recievers with photorefractive optical beam combiners,” IEEE J. Lightwave. Technol. 12, 1207–1223 (1994).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (4)

Rev. Sc. Int. (1)

B. Campagne, A. Blouin, L. Pujol, and J. Montchalin, “Compact and fast response ultrasonic detection device based on two-wave mixing in a gallium arsenide photorefractive crystal,” Rev. Sc. Int. 72, 2478–82 (2001).

Other (3)

A. Yariv, Quantum electronics, 3rd ed. (John Wiley and Sons inc, 1989), 516–29.

L. Sui, T. Murray, G. Maguluri, A. Nieva, F. Bloningen, C. DiMarzio, and R. A. Roy, “Enhanced detection of acousto-photonic scattering using a photorefractive crystal,” in Photons Plus Ultrasound : Imaging and Sensing, A. A. Oraevsky and L. V. Wang, eds., Proc. SPIE5320, 164–171 (2004).

D. Dolfi and F. Micheron, “Imaging process and system for transillumination with photon frequency marking,” International Patent WO 98/00278(1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental setup. L: Single axial mode YAG: Nd3+ laser (λ=1064nm).BS:splits the laser beam into a probe(P) and a reference(R) beam. T: US piezo-transducer. AOM1,2: Acousto-optic modulators. EA ,ES (not drawn),ED : fields associated to the speckle wavefronts (see text). ER reference field. D: silicon photodetector (S=4.9mm 2). L1,2,3,4,5 : wide aperture NA=1 aspherical lenses. B: chiken breast. PR: GaAs photorefractive crystal. LA: Lock-in amplifier.

Fig. 2.
Fig. 2.

Normalised one shot ac-signal obtained with thicknesses t=2 cm (A) and 128 averaged (B) with t=4 cm(×50) chicken breast and P=0.1 MPa. Trace (C) shows the phase modulation of the US (ωmod =305 Hz, cyclic ratio=1/8).

Fig. 3.
Fig. 3.

Lateral 1D-scan (A) of a t=2 cm thick chicken breast containing a 2 mm ink inclusion. The absorbing contribution of the inclusion corresponds to curve (B).

Metrics