Abstract

We report on the single-frequency operation of an optically pumped external cavity semiconductor laser. An output power of up to 400 mW is obtained in a single spatial and longitudinal mode and with a tuning range exceeding 10 nm. The laser has been stabilized electronically to a reference cavity with a relative linewidth of less than 5 kHz.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, �??High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,�?? IEEE Photonics Tech. Lett. 9, 1063-1065 (1997).
    [CrossRef]
  2. M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, �??Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,�?? IEEE Photon. Technol. Lett. 11, 1551-1553 (1999).
    [CrossRef]
  3. S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Späth, �??8-W high-efficiency continuos-wave semiconductor disk laser at 1000 nm,�?? Appl Phys. Lett. 82, 3620-3622 (2003).
    [CrossRef]
  4. W.J. Alford, T.D. Raymond, and A.A. Allerman, �??High power and good beam quality at 980 nm from a vertical external-cavity surface-emitting laser,�?? J. Opt. Soc. Am. B19, 663-666 (2002).
  5. Coherent, Inc. Sapphire series.
  6. S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Häring, R. Paschotta, F. Morier-Genoud, and U. Keller, �??Passively Mode-Locked Diode-Pumped Surface-Emitting Semiconductor Laser,�?? IEEE Photon Technol. Lett. 12, 1135-1137 (2000).
    [CrossRef]
  7. A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes and G. Saint-Girons, and J. S. Roberts, �??Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,�?? Appl. Phys. Lett. 80, 3892-3894 (2002).
    [CrossRef]
  8. T. Asano, T. Tojyo, T. Mizuno, M. Takeya, S. Ikeda, K. Shibuya, T. Hino, S. Uchida, and M. Ikeda, �??100-mW Kink-Free Blue-Violet Laser Diodes With Low Aspect Ratio,�?? IEEE J. Quantum Electron. 39, 135-140 (2003).
    [CrossRef]
  9. J.-M. Hopkins, S.A. Smith, C.W. Jeon, H.D. Sun, D. Burns, S. Calvez, M.D. Dawson, T. Jouhti, and M. Pessa, �??0.6W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 µm,�?? Electron. Lett. 40, 30-31 (2004).
    [CrossRef]
  10. J.E. Hastie, J.M. Hopkins, S. Calvez, C.W. Jeon, D. Burns, R. Abram, E. Riis, A.I. Ferguson, and M.D. Dawson, �??0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,�?? IEEE Photonics Technol. Lett. 13, 894-896 (2003).
    [CrossRef]
  11. Z. L. Liau, �??Semiconductor wafer bonding via liquid capillarity,�?? Appl. Phys. Lett. 77, 651�??653 (2000).
    [CrossRef]
  12. K.S. Gardner, R.H. Abram, and E. Riis �??A birefringent etalon as single-mode selector in a laser cavity,�?? Opt. Express 12, 2365-2370 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2365">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2365</a>
    [CrossRef] [PubMed]

Appl Phys. Lett.

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Späth, �??8-W high-efficiency continuos-wave semiconductor disk laser at 1000 nm,�?? Appl Phys. Lett. 82, 3620-3622 (2003).
[CrossRef]

Appl. Phys. Lett.

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes and G. Saint-Girons, and J. S. Roberts, �??Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,�?? Appl. Phys. Lett. 80, 3892-3894 (2002).
[CrossRef]

Z. L. Liau, �??Semiconductor wafer bonding via liquid capillarity,�?? Appl. Phys. Lett. 77, 651�??653 (2000).
[CrossRef]

Electron. Lett.

J.-M. Hopkins, S.A. Smith, C.W. Jeon, H.D. Sun, D. Burns, S. Calvez, M.D. Dawson, T. Jouhti, and M. Pessa, �??0.6W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 µm,�?? Electron. Lett. 40, 30-31 (2004).
[CrossRef]

IEEE J. Quantum Electron.

T. Asano, T. Tojyo, T. Mizuno, M. Takeya, S. Ikeda, K. Shibuya, T. Hino, S. Uchida, and M. Ikeda, �??100-mW Kink-Free Blue-Violet Laser Diodes With Low Aspect Ratio,�?? IEEE J. Quantum Electron. 39, 135-140 (2003).
[CrossRef]

IEEE Photon Technol. Lett.

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Häring, R. Paschotta, F. Morier-Genoud, and U. Keller, �??Passively Mode-Locked Diode-Pumped Surface-Emitting Semiconductor Laser,�?? IEEE Photon Technol. Lett. 12, 1135-1137 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, �??Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,�?? IEEE Photon. Technol. Lett. 11, 1551-1553 (1999).
[CrossRef]

IEEE Photonics Tech. Lett.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, �??High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,�?? IEEE Photonics Tech. Lett. 9, 1063-1065 (1997).
[CrossRef]

IEEE Photonics Technol. Lett.

J.E. Hastie, J.M. Hopkins, S. Calvez, C.W. Jeon, D. Burns, R. Abram, E. Riis, A.I. Ferguson, and M.D. Dawson, �??0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,�?? IEEE Photonics Technol. Lett. 13, 894-896 (2003).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Other

Coherent, Inc. Sapphire series.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) The gain medium and cavity end mirror are grown in a monolithic structure by the MOCVD technique. This figure shows the structure used in the present work designed for pumping at 808 nm and lasing at 970 nm. (b) Schematic of the laser cavity configuration used for the VECSEL work. The output from a fiber-coupled pump laser is focused onto the gain medium matching the spot size of the linear folded cavity. Heat is removed from the surface of the gain medium using a diamond heat spreader. This cavity geometry provides sufficient space for insertion of intra-cavity elements for single-frequency selection. A cavity mirror mounted on a piezo-electric transducer (PZT) allows electronic servo control of the cavity length for frequency stabilization.

Fig. 2.
Fig. 2.

Output power as a function of pump power for basic VECSEL with no wavelength selecting intra-cavity elements. Both data sets taken with the gain medium at a temperature of 4° C and 10° C respectively show an initial slope efficiency of 33%. However, the thermal roll-over starts at a higher pump power for the low temperature data and hence a higher maximum power is achieved.

Fig. 3.
Fig. 3.

The spatial profile of the output beam. (a): Normalized profile shown together with Gaussian fit with e-2 radius ω0. (b): False color image of beam profile.

Fig. 4.
Fig. 4.

The VECSEL can be tuned by the insertion of a single-plate birefringent filter (BRF) into the cavity. The additional inclusion of an intra-cavity etalon ensures single longitudinal operation. The tuning ranges shown here is for a TEM00 mode and limited by the free spectral range of the filter and not the gain bandwidth. The pump power is constant at 5.5 W.

Fig. 5.
Fig. 5.

Frequency stability of the VECSEL. The insert shows the frequency deviation relative to a cavity as a function of time while the main figure provides a spectral analysis of this trace.

Metrics