Abstract

We report the design, fabrication, and measurement of high efficiency, compact 45° single air interface bends in low refractive index contrast waveguides in a low refractive index material system. Using standard microfabrication techniques, the bends are fabricated on silicon substrates using perfluorcyclobutyl (PFCB) copolymers, which feature a high glass transition temperature and low absorption loss. The measured 45° bends have a loss of 0.30±0.03dB/bend for TM polarization and 0.33±0.03dB/bend for TE polarization.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L.H. Spiekman, Y. S. O., E.G. Metaal, F.H. Groen, P. Demeester, and M.K. Smit, “Ultrasmall waveguide bends: the corner mirrors of the future?” IEEE Proc. Optoelectron. 142, 61–65 (1995).
    [Crossref]
  2. Milos Popovic, Shoji K. W., Hermann A. Akiyama, Jurgen Haus, and Michel, “Air Trenches for Sharp Silica Waveguide Bends,” J. Lightwave Technol. 20, 1762–1772 (2002).
    [Crossref]
  3. Seunghyun Kim, Gregory P. Nordin, Jianhua Jiang, and Jingbo Cai, “High Efficiency 90° Silica Waveguide Bend Using an Air Hole Photonic Crystal Region,” IEEE Phot. Technol. Lett. 16, 1846–1848 (2004).
    [Crossref]
  4. Lixia Li, Gregory P. Nordin, Jennifer M. English, and Jianhua Jiang, “Small-area bends and beamsplitters for low-index-contrast waveguides,” Opt. Express 11, 282–290 (2003).
    [Crossref] [PubMed]
  5. Kazuhiko Ogusu, “Transmission Characteristics of Optical Waveguide Corners,” Opt. Commum. 55, 149–153 (1985).
    [Crossref]
  6. Regis Orobtchouk, Suzanne Laval, Daniel Pascal, and Alain Koster, “Analysis of Integrated Optical Waveguide Mirrors,” J. Lightwave Technol. 15, 815–820 (1997).
    [Crossref]
  7. L. Faustini, C. Coriasso, A. Stano, C. Cacciatore, and D. Campi, “Loss Analysis and Interference Effect in Semiconductor Integrated Waveguide Turning Mirrors,” Photon. Technol. Lett. 8, 1355–1357 (1996).
    [Crossref]
  8. John E. Johnson and C. L. Tang, “Precise Determination of Turning Mirror Loss Using GaAs/AlGaAs Lasers with up to Ten 90° Intracavity Turning Mirrors,” Photon. Techn. Lett. 4, 24–26 (1992).
    [Crossref]
  9. P. D. Swanson, D. B. Shire, C. L. Tang, M. A. Parker, J. S. Kimmet, and R. J. Michalak, “Electron-Cyclotron Resonance Etching of Mirrors for Ridge-Guided Lasers,” Photon. Techn. Lett. 7, 605–607 (1995).
    [Crossref]
  10. Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, “Integrated Waveguide Turning Mirror in Silicon-on-Insulator,” Phot. Techn. Lett. 14, 68–70 (2002).
    [Crossref]
  11. Smith, D.W. Chen, S. Kumar, S. Ballato, J. Shah, H. Topping, and C. Foulger, “Perfluorocyclobutyl Copolymers for Microphotonics,” S. Adv. Mater. 14, 1585 (2002).
    [Crossref]
  12. Smith, D.W. Hoeglund, A.B. Shah, H.V. Radler, M.J. Langhoff, and C.A., “Perfluorocyclobutane Polymers for Optical Fibers and Dielectric Waveguides,” in Optical Polymers, J. Harmon; Ed., ACS Symp. Ser.795, Ch. 4, pp. 49–62 (2001).
    [Crossref]
  13. John Ballato, Dennis W. Smith, and S. H. Foulger, “Optical Properties of Perfluorocyclobutyl (PFCB) Polymers,” J. Opt. Soc. Am. B 201838 (2003).
    [Crossref]

2004 (1)

Seunghyun Kim, Gregory P. Nordin, Jianhua Jiang, and Jingbo Cai, “High Efficiency 90° Silica Waveguide Bend Using an Air Hole Photonic Crystal Region,” IEEE Phot. Technol. Lett. 16, 1846–1848 (2004).
[Crossref]

2003 (2)

2002 (3)

Milos Popovic, Shoji K. W., Hermann A. Akiyama, Jurgen Haus, and Michel, “Air Trenches for Sharp Silica Waveguide Bends,” J. Lightwave Technol. 20, 1762–1772 (2002).
[Crossref]

Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, “Integrated Waveguide Turning Mirror in Silicon-on-Insulator,” Phot. Techn. Lett. 14, 68–70 (2002).
[Crossref]

Smith, D.W. Chen, S. Kumar, S. Ballato, J. Shah, H. Topping, and C. Foulger, “Perfluorocyclobutyl Copolymers for Microphotonics,” S. Adv. Mater. 14, 1585 (2002).
[Crossref]

1997 (1)

Regis Orobtchouk, Suzanne Laval, Daniel Pascal, and Alain Koster, “Analysis of Integrated Optical Waveguide Mirrors,” J. Lightwave Technol. 15, 815–820 (1997).
[Crossref]

1996 (1)

L. Faustini, C. Coriasso, A. Stano, C. Cacciatore, and D. Campi, “Loss Analysis and Interference Effect in Semiconductor Integrated Waveguide Turning Mirrors,” Photon. Technol. Lett. 8, 1355–1357 (1996).
[Crossref]

1995 (2)

L.H. Spiekman, Y. S. O., E.G. Metaal, F.H. Groen, P. Demeester, and M.K. Smit, “Ultrasmall waveguide bends: the corner mirrors of the future?” IEEE Proc. Optoelectron. 142, 61–65 (1995).
[Crossref]

P. D. Swanson, D. B. Shire, C. L. Tang, M. A. Parker, J. S. Kimmet, and R. J. Michalak, “Electron-Cyclotron Resonance Etching of Mirrors for Ridge-Guided Lasers,” Photon. Techn. Lett. 7, 605–607 (1995).
[Crossref]

1992 (1)

John E. Johnson and C. L. Tang, “Precise Determination of Turning Mirror Loss Using GaAs/AlGaAs Lasers with up to Ten 90° Intracavity Turning Mirrors,” Photon. Techn. Lett. 4, 24–26 (1992).
[Crossref]

1985 (1)

Kazuhiko Ogusu, “Transmission Characteristics of Optical Waveguide Corners,” Opt. Commum. 55, 149–153 (1985).
[Crossref]

Akiyama, Hermann A.

Ballato, John

Ballato, S.

Smith, D.W. Chen, S. Kumar, S. Ballato, J. Shah, H. Topping, and C. Foulger, “Perfluorocyclobutyl Copolymers for Microphotonics,” S. Adv. Mater. 14, 1585 (2002).
[Crossref]

C.A.,

Smith, D.W. Hoeglund, A.B. Shah, H.V. Radler, M.J. Langhoff, and C.A., “Perfluorocyclobutane Polymers for Optical Fibers and Dielectric Waveguides,” in Optical Polymers, J. Harmon; Ed., ACS Symp. Ser.795, Ch. 4, pp. 49–62 (2001).
[Crossref]

Cacciatore, C.

L. Faustini, C. Coriasso, A. Stano, C. Cacciatore, and D. Campi, “Loss Analysis and Interference Effect in Semiconductor Integrated Waveguide Turning Mirrors,” Photon. Technol. Lett. 8, 1355–1357 (1996).
[Crossref]

Cai, Jingbo

Seunghyun Kim, Gregory P. Nordin, Jianhua Jiang, and Jingbo Cai, “High Efficiency 90° Silica Waveguide Bend Using an Air Hole Photonic Crystal Region,” IEEE Phot. Technol. Lett. 16, 1846–1848 (2004).
[Crossref]

Campi, D.

L. Faustini, C. Coriasso, A. Stano, C. Cacciatore, and D. Campi, “Loss Analysis and Interference Effect in Semiconductor Integrated Waveguide Turning Mirrors,” Photon. Technol. Lett. 8, 1355–1357 (1996).
[Crossref]

Chen, D.W.

Smith, D.W. Chen, S. Kumar, S. Ballato, J. Shah, H. Topping, and C. Foulger, “Perfluorocyclobutyl Copolymers for Microphotonics,” S. Adv. Mater. 14, 1585 (2002).
[Crossref]

Coriasso, C.

L. Faustini, C. Coriasso, A. Stano, C. Cacciatore, and D. Campi, “Loss Analysis and Interference Effect in Semiconductor Integrated Waveguide Turning Mirrors,” Photon. Technol. Lett. 8, 1355–1357 (1996).
[Crossref]

Demeester, P.

L.H. Spiekman, Y. S. O., E.G. Metaal, F.H. Groen, P. Demeester, and M.K. Smit, “Ultrasmall waveguide bends: the corner mirrors of the future?” IEEE Proc. Optoelectron. 142, 61–65 (1995).
[Crossref]

English, Jennifer M.

Faustini, L.

L. Faustini, C. Coriasso, A. Stano, C. Cacciatore, and D. Campi, “Loss Analysis and Interference Effect in Semiconductor Integrated Waveguide Turning Mirrors,” Photon. Technol. Lett. 8, 1355–1357 (1996).
[Crossref]

Foulger, C.

Smith, D.W. Chen, S. Kumar, S. Ballato, J. Shah, H. Topping, and C. Foulger, “Perfluorocyclobutyl Copolymers for Microphotonics,” S. Adv. Mater. 14, 1585 (2002).
[Crossref]

Foulger, S. H.

Groen, F.H.

L.H. Spiekman, Y. S. O., E.G. Metaal, F.H. Groen, P. Demeester, and M.K. Smit, “Ultrasmall waveguide bends: the corner mirrors of the future?” IEEE Proc. Optoelectron. 142, 61–65 (1995).
[Crossref]

Haus, Jurgen

Hoeglund, D.W.

Smith, D.W. Hoeglund, A.B. Shah, H.V. Radler, M.J. Langhoff, and C.A., “Perfluorocyclobutane Polymers for Optical Fibers and Dielectric Waveguides,” in Optical Polymers, J. Harmon; Ed., ACS Symp. Ser.795, Ch. 4, pp. 49–62 (2001).
[Crossref]

Jiang, Jianhua

Seunghyun Kim, Gregory P. Nordin, Jianhua Jiang, and Jingbo Cai, “High Efficiency 90° Silica Waveguide Bend Using an Air Hole Photonic Crystal Region,” IEEE Phot. Technol. Lett. 16, 1846–1848 (2004).
[Crossref]

Lixia Li, Gregory P. Nordin, Jennifer M. English, and Jianhua Jiang, “Small-area bends and beamsplitters for low-index-contrast waveguides,” Opt. Express 11, 282–290 (2003).
[Crossref] [PubMed]

Johnson, John E.

John E. Johnson and C. L. Tang, “Precise Determination of Turning Mirror Loss Using GaAs/AlGaAs Lasers with up to Ten 90° Intracavity Turning Mirrors,” Photon. Techn. Lett. 4, 24–26 (1992).
[Crossref]

K. W., Shoji

Kim, Seunghyun

Seunghyun Kim, Gregory P. Nordin, Jianhua Jiang, and Jingbo Cai, “High Efficiency 90° Silica Waveguide Bend Using an Air Hole Photonic Crystal Region,” IEEE Phot. Technol. Lett. 16, 1846–1848 (2004).
[Crossref]

Kimmet, J. S.

P. D. Swanson, D. B. Shire, C. L. Tang, M. A. Parker, J. S. Kimmet, and R. J. Michalak, “Electron-Cyclotron Resonance Etching of Mirrors for Ridge-Guided Lasers,” Photon. Techn. Lett. 7, 605–607 (1995).
[Crossref]

Koster, Alain

Regis Orobtchouk, Suzanne Laval, Daniel Pascal, and Alain Koster, “Analysis of Integrated Optical Waveguide Mirrors,” J. Lightwave Technol. 15, 815–820 (1997).
[Crossref]

Kumar, S.

Smith, D.W. Chen, S. Kumar, S. Ballato, J. Shah, H. Topping, and C. Foulger, “Perfluorocyclobutyl Copolymers for Microphotonics,” S. Adv. Mater. 14, 1585 (2002).
[Crossref]

Langhoff, M.J.

Smith, D.W. Hoeglund, A.B. Shah, H.V. Radler, M.J. Langhoff, and C.A., “Perfluorocyclobutane Polymers for Optical Fibers and Dielectric Waveguides,” in Optical Polymers, J. Harmon; Ed., ACS Symp. Ser.795, Ch. 4, pp. 49–62 (2001).
[Crossref]

Laval, Suzanne

Regis Orobtchouk, Suzanne Laval, Daniel Pascal, and Alain Koster, “Analysis of Integrated Optical Waveguide Mirrors,” J. Lightwave Technol. 15, 815–820 (1997).
[Crossref]

Li, Lixia

Li, T.

Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, “Integrated Waveguide Turning Mirror in Silicon-on-Insulator,” Phot. Techn. Lett. 14, 68–70 (2002).
[Crossref]

Metaal, E.G.

L.H. Spiekman, Y. S. O., E.G. Metaal, F.H. Groen, P. Demeester, and M.K. Smit, “Ultrasmall waveguide bends: the corner mirrors of the future?” IEEE Proc. Optoelectron. 142, 61–65 (1995).
[Crossref]

Michalak, R. J.

P. D. Swanson, D. B. Shire, C. L. Tang, M. A. Parker, J. S. Kimmet, and R. J. Michalak, “Electron-Cyclotron Resonance Etching of Mirrors for Ridge-Guided Lasers,” Photon. Techn. Lett. 7, 605–607 (1995).
[Crossref]

Michel,

Nordin, Gregory P.

Seunghyun Kim, Gregory P. Nordin, Jianhua Jiang, and Jingbo Cai, “High Efficiency 90° Silica Waveguide Bend Using an Air Hole Photonic Crystal Region,” IEEE Phot. Technol. Lett. 16, 1846–1848 (2004).
[Crossref]

Lixia Li, Gregory P. Nordin, Jennifer M. English, and Jianhua Jiang, “Small-area bends and beamsplitters for low-index-contrast waveguides,” Opt. Express 11, 282–290 (2003).
[Crossref] [PubMed]

Ogusu, Kazuhiko

Kazuhiko Ogusu, “Transmission Characteristics of Optical Waveguide Corners,” Opt. Commum. 55, 149–153 (1985).
[Crossref]

Orobtchouk, Regis

Regis Orobtchouk, Suzanne Laval, Daniel Pascal, and Alain Koster, “Analysis of Integrated Optical Waveguide Mirrors,” J. Lightwave Technol. 15, 815–820 (1997).
[Crossref]

Parker, M. A.

P. D. Swanson, D. B. Shire, C. L. Tang, M. A. Parker, J. S. Kimmet, and R. J. Michalak, “Electron-Cyclotron Resonance Etching of Mirrors for Ridge-Guided Lasers,” Photon. Techn. Lett. 7, 605–607 (1995).
[Crossref]

Pascal, Daniel

Regis Orobtchouk, Suzanne Laval, Daniel Pascal, and Alain Koster, “Analysis of Integrated Optical Waveguide Mirrors,” J. Lightwave Technol. 15, 815–820 (1997).
[Crossref]

Popovic, Milos

Radler, H.V.

Smith, D.W. Hoeglund, A.B. Shah, H.V. Radler, M.J. Langhoff, and C.A., “Perfluorocyclobutane Polymers for Optical Fibers and Dielectric Waveguides,” in Optical Polymers, J. Harmon; Ed., ACS Symp. Ser.795, Ch. 4, pp. 49–62 (2001).
[Crossref]

Shah, A.B.

Smith, D.W. Hoeglund, A.B. Shah, H.V. Radler, M.J. Langhoff, and C.A., “Perfluorocyclobutane Polymers for Optical Fibers and Dielectric Waveguides,” in Optical Polymers, J. Harmon; Ed., ACS Symp. Ser.795, Ch. 4, pp. 49–62 (2001).
[Crossref]

Shah, J.

Smith, D.W. Chen, S. Kumar, S. Ballato, J. Shah, H. Topping, and C. Foulger, “Perfluorocyclobutyl Copolymers for Microphotonics,” S. Adv. Mater. 14, 1585 (2002).
[Crossref]

Shire, D. B.

P. D. Swanson, D. B. Shire, C. L. Tang, M. A. Parker, J. S. Kimmet, and R. J. Michalak, “Electron-Cyclotron Resonance Etching of Mirrors for Ridge-Guided Lasers,” Photon. Techn. Lett. 7, 605–607 (1995).
[Crossref]

Smit, M.K.

L.H. Spiekman, Y. S. O., E.G. Metaal, F.H. Groen, P. Demeester, and M.K. Smit, “Ultrasmall waveguide bends: the corner mirrors of the future?” IEEE Proc. Optoelectron. 142, 61–65 (1995).
[Crossref]

Smith,

Smith, D.W. Chen, S. Kumar, S. Ballato, J. Shah, H. Topping, and C. Foulger, “Perfluorocyclobutyl Copolymers for Microphotonics,” S. Adv. Mater. 14, 1585 (2002).
[Crossref]

Smith, D.W. Hoeglund, A.B. Shah, H.V. Radler, M.J. Langhoff, and C.A., “Perfluorocyclobutane Polymers for Optical Fibers and Dielectric Waveguides,” in Optical Polymers, J. Harmon; Ed., ACS Symp. Ser.795, Ch. 4, pp. 49–62 (2001).
[Crossref]

Smith, Dennis W.

Spiekman, L.H.

L.H. Spiekman, Y. S. O., E.G. Metaal, F.H. Groen, P. Demeester, and M.K. Smit, “Ultrasmall waveguide bends: the corner mirrors of the future?” IEEE Proc. Optoelectron. 142, 61–65 (1995).
[Crossref]

Stano, A.

L. Faustini, C. Coriasso, A. Stano, C. Cacciatore, and D. Campi, “Loss Analysis and Interference Effect in Semiconductor Integrated Waveguide Turning Mirrors,” Photon. Technol. Lett. 8, 1355–1357 (1996).
[Crossref]

Swanson, P. D.

P. D. Swanson, D. B. Shire, C. L. Tang, M. A. Parker, J. S. Kimmet, and R. J. Michalak, “Electron-Cyclotron Resonance Etching of Mirrors for Ridge-Guided Lasers,” Photon. Techn. Lett. 7, 605–607 (1995).
[Crossref]

Tang, C. L.

P. D. Swanson, D. B. Shire, C. L. Tang, M. A. Parker, J. S. Kimmet, and R. J. Michalak, “Electron-Cyclotron Resonance Etching of Mirrors for Ridge-Guided Lasers,” Photon. Techn. Lett. 7, 605–607 (1995).
[Crossref]

John E. Johnson and C. L. Tang, “Precise Determination of Turning Mirror Loss Using GaAs/AlGaAs Lasers with up to Ten 90° Intracavity Turning Mirrors,” Photon. Techn. Lett. 4, 24–26 (1992).
[Crossref]

Tang, Y. Z.

Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, “Integrated Waveguide Turning Mirror in Silicon-on-Insulator,” Phot. Techn. Lett. 14, 68–70 (2002).
[Crossref]

Topping, H.

Smith, D.W. Chen, S. Kumar, S. Ballato, J. Shah, H. Topping, and C. Foulger, “Perfluorocyclobutyl Copolymers for Microphotonics,” S. Adv. Mater. 14, 1585 (2002).
[Crossref]

Wang, W. H.

Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, “Integrated Waveguide Turning Mirror in Silicon-on-Insulator,” Phot. Techn. Lett. 14, 68–70 (2002).
[Crossref]

Wang, Y. L.

Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, “Integrated Waveguide Turning Mirror in Silicon-on-Insulator,” Phot. Techn. Lett. 14, 68–70 (2002).
[Crossref]

Y. S. O.,

L.H. Spiekman, Y. S. O., E.G. Metaal, F.H. Groen, P. Demeester, and M.K. Smit, “Ultrasmall waveguide bends: the corner mirrors of the future?” IEEE Proc. Optoelectron. 142, 61–65 (1995).
[Crossref]

IEEE Phot. Technol. Lett. (1)

Seunghyun Kim, Gregory P. Nordin, Jianhua Jiang, and Jingbo Cai, “High Efficiency 90° Silica Waveguide Bend Using an Air Hole Photonic Crystal Region,” IEEE Phot. Technol. Lett. 16, 1846–1848 (2004).
[Crossref]

IEEE Proc. Optoelectron. (1)

L.H. Spiekman, Y. S. O., E.G. Metaal, F.H. Groen, P. Demeester, and M.K. Smit, “Ultrasmall waveguide bends: the corner mirrors of the future?” IEEE Proc. Optoelectron. 142, 61–65 (1995).
[Crossref]

J. Lightwave Technol. (2)

Milos Popovic, Shoji K. W., Hermann A. Akiyama, Jurgen Haus, and Michel, “Air Trenches for Sharp Silica Waveguide Bends,” J. Lightwave Technol. 20, 1762–1772 (2002).
[Crossref]

Regis Orobtchouk, Suzanne Laval, Daniel Pascal, and Alain Koster, “Analysis of Integrated Optical Waveguide Mirrors,” J. Lightwave Technol. 15, 815–820 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commum. (1)

Kazuhiko Ogusu, “Transmission Characteristics of Optical Waveguide Corners,” Opt. Commum. 55, 149–153 (1985).
[Crossref]

Opt. Express (1)

Phot. Techn. Lett. (1)

Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, “Integrated Waveguide Turning Mirror in Silicon-on-Insulator,” Phot. Techn. Lett. 14, 68–70 (2002).
[Crossref]

Photon. Techn. Lett. (2)

John E. Johnson and C. L. Tang, “Precise Determination of Turning Mirror Loss Using GaAs/AlGaAs Lasers with up to Ten 90° Intracavity Turning Mirrors,” Photon. Techn. Lett. 4, 24–26 (1992).
[Crossref]

P. D. Swanson, D. B. Shire, C. L. Tang, M. A. Parker, J. S. Kimmet, and R. J. Michalak, “Electron-Cyclotron Resonance Etching of Mirrors for Ridge-Guided Lasers,” Photon. Techn. Lett. 7, 605–607 (1995).
[Crossref]

Photon. Technol. Lett. (1)

L. Faustini, C. Coriasso, A. Stano, C. Cacciatore, and D. Campi, “Loss Analysis and Interference Effect in Semiconductor Integrated Waveguide Turning Mirrors,” Photon. Technol. Lett. 8, 1355–1357 (1996).
[Crossref]

S. Adv. Mater. (1)

Smith, D.W. Chen, S. Kumar, S. Ballato, J. Shah, H. Topping, and C. Foulger, “Perfluorocyclobutyl Copolymers for Microphotonics,” S. Adv. Mater. 14, 1585 (2002).
[Crossref]

Other (1)

Smith, D.W. Hoeglund, A.B. Shah, H.V. Radler, M.J. Langhoff, and C.A., “Perfluorocyclobutane Polymers for Optical Fibers and Dielectric Waveguides,” in Optical Polymers, J. Harmon; Ed., ACS Symp. Ser.795, Ch. 4, pp. 49–62 (2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Top view of SAIB structure for a 45° waveguide bend showing the air interface placement and choice of reference point for design.

Fig. 2.
Fig. 2.

Magnitude squared time averaged (a) magnetic field plot (TE polarization) and (b) electric field plot (TM polarization) at λ=1.55µm.

Fig. 3.
Fig. 3.

(a) Bend efficiency as a function of the position of the air interface relative to the O position. The designed position of the SAIB is zp=-0.2µm. Note that the vertical axis starts at a bend efficiency of 0.5.

Fig. 4.
Fig. 4.

(a) Cross-section SEM image showing the typical etch undercut (1.1µm as depicted by the cursor width) for an air trench.

Fig. 5.
Fig. 5.

Microscope image taken with a DIC filter through a 50x objective focused at the waveguide plane of SAIBs in good alignment.

Fig. 6.
Fig. 6.

SEM image of finished air trench bend. The rounded edges are introduced to reduce stress. The dotted line depicts the waveguide core location.

Fig. 7.
Fig. 7.

SEM image of a typical sidewall for the deep anisotropic air trench etch.

Fig. 8.
Fig. 8.

SEM image of a typical air trench sidewall.

Fig. 9.
Fig. 9.

(a) Output power as a function of moving the output fiber away from the waveguide. (b) Standard deviation for measured output power in ten different measurements.

Fig. 10.
Fig. 10.

Measurement data for a waveguide group that shows a bend efficiency of 93.4% with error bars indicating the variability introduced by measurement uncertainty. This waveguide group has an undercut compensation of 1.1µm.

Fig. 11.
Fig. 11.

Simulation and measurement data as a function of SAIB interface misplacement. The horizontal axis is the actual offset introduced into the SAIB mask to compensate for misalignment.

Metrics