Abstract

High performance, short coherence length light sources with broad bandwidths and high output powers are critical for high-speed, ultrahigh resolution OCT imaging. We demonstrate a new, high performance light source for ultrahigh resolution OCT. Bandwidths of 140 nm at 1300 nm center wavelength with high output powers of 330 mW are generated by an all-fiber Raman light source based on a continuous-wave Yb-fiber laser-pumped microstructure fiber. The light source is compact, robust, turnkey and requires no optical alignment. In vivo, ultrahigh resolution, high-speed, time domain OCT imaging with <5 µm axial resolution is demonstrated.

© 2004 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef]
  2. J.G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in vivo imaging," Nat. Biotechnol. 21, 1361-1367 (2003).
    [CrossRef]
  3. B. Bouma, G.J. Tearney, S.A. Boppart, M.R. Hee, M.E. Brezinski, and J.G. Fujimoto, "High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source," Opt. Lett. 20, 1486-1488 (1995).
  4. W. Drexler, U. Morgner, F.X. Kartner, C. Pitris, S.A. Boppart, X.D. Li, E.P. Ippen, and J.G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
  5. I. Hartl, X.D. Li, C. Chudoba, R.K. Ghanta, T.H. Ko, J.G. Fujimoto, J.K. Ranka, and R.S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
  6. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A.F. Fercher, W. Drexler, A. Apolonski, W.J. Wadsworth, J.C. Knight, P.S.J. Russell, M. Vetterlein, and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 27, 1800-1802 (2002).
  7. Y.M. Wang, Y.H. Zhao, J.S. Nelson, Z.P. Chen, and R.S. Windeler, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt. Lett. 28, 182-184 (2003).
  8. A.M. Kowalevicz, Jr., T.R. Schibli, F.X. Kartner, and J.G. Fujimoto, "Ultralow-threshold Kerr-lens modelocked Ti:Al2O3 laser," Opt. Lett. 27, 2037-2039 (2002).
  9. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E.M. Anger, P.K. Ahnelt, M. Stur, J.E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, "Compact, lowcost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 28, 905-907 (2003).
  10. K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, "Compact, broad-bandwidth fiber laser for sub-2-micron axial resolution optical coherence tomography in the 1300-nm wavelength region," Opt. Lett. 28, 707-709 (2003).
  11. J.M. Schmitt, A. Knuttel, M. Yadlowsky, and M.A. Eckhaus, "Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994).
    [CrossRef]
  12. B.E. Bouma, G.J. Tearney, I.P. Bilinsky, B. Golubovic, and J.G. Fujimoto, "Self-phase-modulated Kerr-lens mode-locked Cr:Forsterite laser source for optical coherence tomography," Opt. Lett. 21, 1839-1841 (1996).
  13. S. Bourquin, A.D. Aguirre, I. Hartl, P. Hsiung, T.H. Ko, and J.G. Fujimoto, "Compact broadband light source for ultra high resolution optical coherence tomography imaging using a femtosecond Nd:Glass laser and a nonlinear fiber," Opt. Express 11, 3290-3297 (2003).
  14. K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, and R.S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904-1-113904-4 (2003).
    [CrossRef]
  15. L. Provino, J.M. Dudley, H. Maillotte, N. Grossard, R.S. Windeler, and B.J. Eggleton, "Compact broadband continuum source based on microchip laser-pumped microstructured fibre," Electron. Lett. 37, 558-560 (2001).
    [CrossRef]
  16. P.A. Champert, S.V. Popov, and J.R. Taylor, "Generation of multiwatt, broadband continua in holey fibers," Opt. Lett. 27, 122-124 (2002).
  17. A.V. Avdokhin, S.V. Popov, and J.R. Taylor, "Continuous-wave, high-power, Raman continuum generation in holey fibers," Opt. Lett. 28, 1353-1355 (2003).
  18. G.L. Abbas, V.W.S. Chan, and T.K. Yee, "Local-oscillator excess-noise suppression for homodyne and heterodyne detection," Opt. Lett. 8, 419-421 (1983).
  19. A. Knuttel and M. Boehlau-Godau, "Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography," J. Biomed. Opt. 5, 83-92 (2000).
    [CrossRef]

Electron. Lett. (1)

L. Provino, J.M. Dudley, H. Maillotte, N. Grossard, R.S. Windeler, and B.J. Eggleton, "Compact broadband continuum source based on microchip laser-pumped microstructured fibre," Electron. Lett. 37, 558-560 (2001).
[CrossRef]

J. Biomed. Opt. (1)

A. Knuttel and M. Boehlau-Godau, "Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography," J. Biomed. Opt. 5, 83-92 (2000).
[CrossRef]

Nat. Biotechnol. (1)

J.G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in vivo imaging," Nat. Biotechnol. 21, 1361-1367 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (12)

G.L. Abbas, V.W.S. Chan, and T.K. Yee, "Local-oscillator excess-noise suppression for homodyne and heterodyne detection," Opt. Lett. 8, 419-421 (1983).

B. Bouma, G.J. Tearney, S.A. Boppart, M.R. Hee, M.E. Brezinski, and J.G. Fujimoto, "High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source," Opt. Lett. 20, 1486-1488 (1995).

W. Drexler, U. Morgner, F.X. Kartner, C. Pitris, S.A. Boppart, X.D. Li, E.P. Ippen, and J.G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).

B.E. Bouma, G.J. Tearney, I.P. Bilinsky, B. Golubovic, and J.G. Fujimoto, "Self-phase-modulated Kerr-lens mode-locked Cr:Forsterite laser source for optical coherence tomography," Opt. Lett. 21, 1839-1841 (1996).

I. Hartl, X.D. Li, C. Chudoba, R.K. Ghanta, T.H. Ko, J.G. Fujimoto, J.K. Ranka, and R.S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).

P.A. Champert, S.V. Popov, and J.R. Taylor, "Generation of multiwatt, broadband continua in holey fibers," Opt. Lett. 27, 122-124 (2002).

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A.F. Fercher, W. Drexler, A. Apolonski, W.J. Wadsworth, J.C. Knight, P.S.J. Russell, M. Vetterlein, and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 27, 1800-1802 (2002).

A.M. Kowalevicz, Jr., T.R. Schibli, F.X. Kartner, and J.G. Fujimoto, "Ultralow-threshold Kerr-lens modelocked Ti:Al2O3 laser," Opt. Lett. 27, 2037-2039 (2002).

Y.M. Wang, Y.H. Zhao, J.S. Nelson, Z.P. Chen, and R.S. Windeler, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt. Lett. 28, 182-184 (2003).

K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, "Compact, broad-bandwidth fiber laser for sub-2-micron axial resolution optical coherence tomography in the 1300-nm wavelength region," Opt. Lett. 28, 707-709 (2003).

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E.M. Anger, P.K. Ahnelt, M. Stur, J.E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, "Compact, lowcost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 28, 905-907 (2003).

A.V. Avdokhin, S.V. Popov, and J.R. Taylor, "Continuous-wave, high-power, Raman continuum generation in holey fibers," Opt. Lett. 28, 1353-1355 (2003).

Phys. Med. Biol. (1)

J.M. Schmitt, A. Knuttel, M. Yadlowsky, and M.A. Eckhaus, "Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994).
[CrossRef]

Phys. Rev. Lett. (1)

K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, and R.S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904-1-113904-4 (2003).
[CrossRef]

Science (1)

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef]

Supplementary Material (12)

» Media 1: MPG (2357 KB)     
» Media 2: AVI (8328 KB)     
» Media 3: AVI (2371 KB)     
» Media 4: AVI (6196 KB)     
» Media 5: AVI (2336 KB)     
» Media 6: AVI (8306 KB)     
» Media 7: AVI (6196 KB)     
» Media 8: AVI (1747 KB)     
» Media 9: AVI (1747 KB)     
» Media 10: MPG (2296 KB)     
» Media 11: AVI (6024 KB)     
» Media 12: MPG (2167 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics