Abstract

Terahertz (THz) radiation has important applications in spectroscopy, imaging, and space science. Fiber optics for the THz region have been limited to rigid hollow metallic waveguides or short lengths of solid-core transparent dielectrics such as sapphire and plastic. We have fabricated flexible, hollow polycarbonate waveguides with interior Cu coatings for broadband THz transmission using simple liquid-phase chemistry techniques. The losses for these hollow-core guides were measured using a tunable, cw single-mode far IR laser. The losses for the best guides were found to be less than four dB/m and the single mode of the laser was preserved for the smaller bore waveguides.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. W. McGowan, G. Gallot, and D. Grischkowsky, "Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides," Opt. Lett. 24, 1431-1433 (1999).
    [CrossRef]
  2. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Terahertz waveguides," J. Opt. Soc. Am. B 17, 851-863 (2000).
    [CrossRef]
  3. R. Mendis and D. Grischkowsky, "Undistorted guided-wave propagation of subpicosecond terahertz pulses," Opt. Lett. 26, 846-848 (2001).
    [CrossRef]
  4. T. Hidaka, H. Minamide, H. Ito, S. Maeta, and T. Akiyama, "Ferroelectric PVDF cladding terahertz waveguide" in Optical Information, Data Processing and Storage, and Laser Communication Technologies, Jean-Pierre Goedgebuer, N. N Rozanov, S. K. Turitsyn, A. S. Akhmanov, and V. Y. Panchenko, eds., Proc. SPIE 5135, 70-77 (2003).
    [CrossRef]
  5. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers," Appl. Phys. Lett. 76, 1987-1989 (2000).
    [CrossRef]
  6. J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE Press, Bellingham 2004).
    [CrossRef]
  7. J. Harrington, "A review of IR transmitting, hollow waveguides," Fiber and Integrated Optics 19, 211-227 (2000).
    [CrossRef]
  8. R. George and J. A. Harrington, "New coatings for metal-dielectric hollow waveguides" in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE 4616, 129-134 (2002).
    [CrossRef]
  9. A. J. Gatesman, R. H. Giles, and J. Waldman, "High-precision reflectometer for submillimeter wavelengths," J. Opt. Soc. Am. B 12, 212-219 (1995).
    [CrossRef]
  10. Mueller, E., Atmospheric absorption at THz frequencies, (personal communication, 1995).
  11. H. P Roser, M. Yamanaka, R. Wattenbach, and G. V. Schultz, "Investigations of optically pumped submillimeter wave laser modes," International J. Infrared and Millimeter Waves 3, 839-868 (1982).
    [CrossRef]
  12. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos, and E. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
    [CrossRef] [PubMed]
  13. Y. Matsuura, T. Abel, J. Hirsch, and J. A. Harrington, "Small-bore hollow waveguide for delivery of near single-mode IR laser radiation," Electron. Lett. 30, 1688-1690 (1995).
    [CrossRef]
  14. Y. Abe, Y. W. Shi, Y. Matsuura, and M. Miyagi, "Flexible small-bore hollow fibers with an inner polymer coating," Opt. Lett. 25, 150-152 (2000).
    [CrossRef]

Appl. Phys. Lett. (1)

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers," Appl. Phys. Lett. 76, 1987-1989 (2000).
[CrossRef]

Electron. Lett. (1)

Y. Matsuura, T. Abel, J. Hirsch, and J. A. Harrington, "Small-bore hollow waveguide for delivery of near single-mode IR laser radiation," Electron. Lett. 30, 1688-1690 (1995).
[CrossRef]

Fiber and Integrated Optics (1)

J. Harrington, "A review of IR transmitting, hollow waveguides," Fiber and Integrated Optics 19, 211-227 (2000).
[CrossRef]

J. Infrared and Millimeter Waves (1)

H. P Roser, M. Yamanaka, R. Wattenbach, and G. V. Schultz, "Investigations of optically pumped submillimeter wave laser modes," International J. Infrared and Millimeter Waves 3, 839-868 (1982).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (3)

Proc. SPIE (2)

T. Hidaka, H. Minamide, H. Ito, S. Maeta, and T. Akiyama, "Ferroelectric PVDF cladding terahertz waveguide" in Optical Information, Data Processing and Storage, and Laser Communication Technologies, Jean-Pierre Goedgebuer, N. N Rozanov, S. K. Turitsyn, A. S. Akhmanov, and V. Y. Panchenko, eds., Proc. SPIE 5135, 70-77 (2003).
[CrossRef]

R. George and J. A. Harrington, "New coatings for metal-dielectric hollow waveguides" in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE 4616, 129-134 (2002).
[CrossRef]

Science (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos, and E. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Other (2)

Mueller, E., Atmospheric absorption at THz frequencies, (personal communication, 1995).

J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE Press, Bellingham 2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Bending loss for the 2-mm bore waveguide measured at 184.31 μm.

Fig. 2.
Fig. 2.

Spatial profile of output from straight 2-mm bore hollow waveguide at (a) 118.83 μ m, (b) 158.51 μm, and (c) 184.31 μm.

Fig. 3.
Fig. 3.

Spatial profile of output from hollow waveguide at 184.31 μm for (a) straight 2-mm bore, (b) R=40 cm, 2-mm bore, and (c) R=60 cm, 3-mm bore.

Tables (1)

Tables Icon

Table 1. Measured loss for straight Cu-coated hollow polycarbonate waveguides

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α lm = ( u lm 2 π ) 2 λ 2 a 3 Re ( v l ) ,

Metrics