Abstract

The resonant cavity enhanced (RCE) photodetectors is analyzed using the finite difference time domain (FDTD) method. Unlike the analytical models, FDTD includes all of the essential considerations such as the cavity build-up time, standing wave effect and the refractive index profiles across every layer. The fully numerical implementation allows it to be used as a verification of the analytical models. The simulation is demonstrated in terms of time and space enabling one to visualize how the field inside the cavity builds up. The results are compared with the analytical models to point out the subtle differences and assumptions made in the analytical models.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. Kishino, M. S. �?nlü, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, �??Resonant cavity-enhanced (RCE) photodetectors,�?? IEEE J. Quantum Electronics, 27, 2025-2034 (1991).
    [CrossRef]
  2. F. Y. Huang, A. Salvador, X. Gui, N. Teraguchi, and H. Morkoc, �??Resonant-cavity GaAs/InGaAs/AlAs photodiodes with a periodic absorber structure,�?? Appl. Phys. Lett. 63, 141-143 (1993).
    [CrossRef]
  3. A. Srinivasan, S. Murtaza, J. C. Campbell, and B. G. Streetman, �??High quantum efficiency dual wavelength resonant-cavity photodetector,�?? Appl. Phys. Lett. 66, 535-537 (1995).
    [CrossRef]
  4. B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, �??Resonant cavity enhanced detectors embedded in photonic crystals,�?? Appl. Phys. Lett. 72, 2376-2378 (1998).
    [CrossRef]
  5. Y. H. Zhang, H. T. Luo, and W. Z. Shen, �??Study on the quantum efficiency of resonant cavity enhanced GaAs far-infrared detectors,�?? J. Appl. Phys. 91, 5538-5544 (2002).
    [CrossRef]
  6. C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, X. Ren, �??Back-incident SiGe-Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-µm operation,�?? IEEE Photonics Tech. J. 12, 1373-1375 (2000).
    [CrossRef]
  7. S. C. Hagness, R. M. Joseph, �??Subpicosecond electrodynamics of distributed Bragg reflector microlasers: Results from finite difference time domain simulations,�?? Radio Science, 31, 931-941 (1996).
    [CrossRef]
  8. D. K. Cheng, Field and Wave Electromagnetics (Addison-Wesley, Menlo Park, 1992).
  9. M. S. �?nlü, G. Ulu, and M. Gökkavas, �??Resonant cavity enhanced photodetectors,�?? in Photodetectors and Fiber Optics, H. S. Nalwa, ed. (Academic Press, San Diego, Calif., 2001), pp. 97-201.
  10. M. Gökkavas B. M. Onat, E. �?zbay, E. P. Ata, J. Xu, E. Towe, M. S. �?nlü, �??Design and optimization of high-speed resonant cavity enhanced Schottky photodiodes,�?? IEEE J. Quantum Electronics, 35, 208-215 (1999).
    [CrossRef]
  11. M. S. �?nlü, S. Strite, �??Resont cavity enhanced photonic devices,�?? J. Appl. Phys. 78, 607-639 (1995).
    [CrossRef]
  12. M. Born, E. Wolf, Principles of Optics (Pergamon Press, Oxford, U. K., 1980).

Appl. Phys. Lett.

F. Y. Huang, A. Salvador, X. Gui, N. Teraguchi, and H. Morkoc, �??Resonant-cavity GaAs/InGaAs/AlAs photodiodes with a periodic absorber structure,�?? Appl. Phys. Lett. 63, 141-143 (1993).
[CrossRef]

A. Srinivasan, S. Murtaza, J. C. Campbell, and B. G. Streetman, �??High quantum efficiency dual wavelength resonant-cavity photodetector,�?? Appl. Phys. Lett. 66, 535-537 (1995).
[CrossRef]

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, �??Resonant cavity enhanced detectors embedded in photonic crystals,�?? Appl. Phys. Lett. 72, 2376-2378 (1998).
[CrossRef]

IEEE J. Quantum Electronics

K. Kishino, M. S. �?nlü, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, �??Resonant cavity-enhanced (RCE) photodetectors,�?? IEEE J. Quantum Electronics, 27, 2025-2034 (1991).
[CrossRef]

M. Gökkavas B. M. Onat, E. �?zbay, E. P. Ata, J. Xu, E. Towe, M. S. �?nlü, �??Design and optimization of high-speed resonant cavity enhanced Schottky photodiodes,�?? IEEE J. Quantum Electronics, 35, 208-215 (1999).
[CrossRef]

IEEE Photonics Tech. J.

C. Li, Q. Yang, H. Wang, J. Yu, Q. Wang, Y. Li, J. Zhou, H. Huang, X. Ren, �??Back-incident SiGe-Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-µm operation,�?? IEEE Photonics Tech. J. 12, 1373-1375 (2000).
[CrossRef]

J. Appl. Phys.

Y. H. Zhang, H. T. Luo, and W. Z. Shen, �??Study on the quantum efficiency of resonant cavity enhanced GaAs far-infrared detectors,�?? J. Appl. Phys. 91, 5538-5544 (2002).
[CrossRef]

M. S. �?nlü, S. Strite, �??Resont cavity enhanced photonic devices,�?? J. Appl. Phys. 78, 607-639 (1995).
[CrossRef]

Photodetectors and Fiber Optics

M. S. �?nlü, G. Ulu, and M. Gökkavas, �??Resonant cavity enhanced photodetectors,�?? in Photodetectors and Fiber Optics, H. S. Nalwa, ed. (Academic Press, San Diego, Calif., 2001), pp. 97-201.

Radio Science

S. C. Hagness, R. M. Joseph, �??Subpicosecond electrodynamics of distributed Bragg reflector microlasers: Results from finite difference time domain simulations,�?? Radio Science, 31, 931-941 (1996).
[CrossRef]

Other

D. K. Cheng, Field and Wave Electromagnetics (Addison-Wesley, Menlo Park, 1992).

M. Born, E. Wolf, Principles of Optics (Pergamon Press, Oxford, U. K., 1980).

Supplementary Material (1)

» Media 1: MPG (2484 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the RCE photodetector

Fig. 2.
Fig. 2.

Optical field distribution in a RCE photodetector. (a) with no absorption, (b) with absorption. (Video file in case (b) showing the optical field distribution as a function of position (μm) and time. 2.42 MB)

Fig. 3.
Fig. 3.

The energy distribution inside the cavity as a function of time with absorption. The steady-state condition is reached at 540 fs.

Fig. 4.
Fig. 4.

Calculated η as a function of the normalized absorption coefficient. Dashed line shows η, derived by analytical model, and circle and solid line representη, using FDTD and TMM, respectively.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E ( z ) = E m e i k 0 ( n m + n m ) z + E m e i k 0 ( n m + n m ) z
ε r ε 0 E t = × H J
H t = 1 μ 0 × E .
E x n + 1 / 2 ( i ) = [ 1 σΔ t 2 ε r ε 0 1 + σΔ t 2 ε r ε 0 ] E x n 1 / 2 ( i ) [ Δ t ε r ε 0 Δz 1 + σΔ t 2 ε r ε 0 ] [ H y n ( i + 1 / 2 ) H y n ( i 1 / 2 ) ]
H n + 1 ( i + 1 / 2 ) = H y n ( i + 1 / 2 ) Δ t μ 0 Δz [ E x n + 1 / 2 ( i + 1 ) E x n + 1 / 2 ( i ) ] .
α = ω c 0 ε r 2 [ 1 + ( σ ω ε 0 ε r ) 2 1 ] 1 / 2 ( N p / m ) .
η = 1 .
τ p = τ RT Loss .
P l = ( P f e α ex L 1 + P b e α ex L 2 ) ( 1 e αd ) .
η = [ ( 1 + R 2 e αd ) ( 1 R 1 R 2 e αd ) 2 ] ( 1 R 1 ) ( 1 e αd ) .

Metrics