Abstract

We present a novel multi-resolution variational framework for vascular optical coherence elastography (OCE). This method exploits prior information about arterial wall biomechanics to produce robust estimates of tissue velocity and strain, reducing the sensitivity of conventional tracking methods to both noise- and strain-induced signal decorrelation. The velocity and strain estimation performance of this new estimator is demonstrated in simulated OCT image sequences and in benchtop OCT scanning of a vascular tissue sample.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
OCT-based elastography for large and small deformations

Sean J. Kirkpatrick, Ruikang K. Wang, and Donald D. Duncan
Opt. Express 14(24) 11585-11597 (2006)

Strain estimation in phase-sensitive optical coherence elastography

Brendan F. Kennedy, Sze Howe Koh, Robert A. McLaughlin, Kelsey M. Kennedy, Peter R. T. Munro, and David D. Sampson
Biomed. Opt. Express 3(8) 1865-1879 (2012)

Analysis of image formation in optical coherence elastography using a multiphysics approach

Lixin Chin, Andrea Curatolo, Brendan F. Kennedy, Barry J. Doyle, Peter R. T. Munro, Robert A. McLaughlin, and David D. Sampson
Biomed. Opt. Express 5(9) 2913-2930 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G.C. Cheng, H.M. Loree, R.D. Kamm, M.C. Fishbein, and R.T. Lee, “Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation,” Circulation 87(4), 1179–1187 (1993).
    [Crossref] [PubMed]
  2. R.T. Lee, C. Yamamoto, Y. Feng, S. Potter-Perigo, W.H. Briggs, K.T. Landschulz, T.G. Turi, J.F. Thompson, P. Libby, and T.N. Wight, “Mechanical strain induces specific changes in the synthesis and organization of proteogly-cans by vascular smooth muscle cells,” J. Biol. Chem. 276, 13847–51 (2001).
    [PubMed]
  3. M.R. Kaazempur-Mofrad, H.F. Younis, S. Patel, A.G. Isasi, R.C. Chan, D.P. Hinton, R.T. Lee, and R.D. Kamm, “Cyclic Strain in Human Carotid Bifurcation and its Potential Correlation to Atherogenesis: Idealized and Anatomically-Realistic Models,” Journal of Engineering Mathematics 47(3–4), 299–314 (2003).
    [Crossref]
  4. R.T. Lee, F.J. Schoen, H.M. Loree, M.W. Lark, and P. Libby, “Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis. Implications for plaque rupture,” Arterioscler. Thromb. Vasc. Biol. 16, 1070–1073 (1996).
    [Crossref] [PubMed]
  5. J. Ophir, E.I. Cspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity in biological tissues,” Ultrason. Imag. 13(2), 111134 (1991).
    [Crossref]
  6. C.L. de Korte, A.F.W. van der Steen, E.I. Cespedes, G. Pasterkamp, S.G. Carlier, F. Mastik, A.H. Schoneveld, P.W. Serruys, and N. Bom, “Characterization of plaque components and vulnerability with intravascular ultrasound elastography,” Phys. Med. Biol. 45, 1465–1475 (2000).
    [Crossref] [PubMed]
  7. M.M. Doyley, F. Mastik, C.L. Korte de, S.G. Carlier, E.I. Cespedes, P.W. Serruys, N. Bom, and A.F.W. van der Steen, “Advancing intravascular ultrasonic palpation toward clinical applications,” Ultrasound in Med. & Biol. 27(11), 1471–1480 (2001).
    [Crossref]
  8. J.A. Schaar, C.L. Korte de, F. Mastik, C. Strijder, G. Pasterkamp, E. Boersma, P.W. Serruys, and A.F.W. van der Steen, “Characterizing vulnerable plaque features with intravascular elastography,” Circulation 108, 1–6 (2003).
    [Crossref]
  9. I.K. Jang, B.E. Bouma, and D.H. Kang, et al., “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J Am Coll Cardiol. 39, 604609 (2002).
    [Crossref]
  10. J.M. Schmitt, “Optical Coherence Tomography (OCT): a review,” IEEE Journal of Selected Topics in Quantum Electronics 5(4), 1205–1215 (1998).
    [Crossref]
  11. J.M. Schmitt, “OCT Elastography: Imaging microscopic deformation and strain of tissue,” Optics Express 3, 199–211 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-199.
    [Crossref] [PubMed]
  12. D.D. Duncan and S.J. Kirkpatrick, “Processing algorithms for tracking speckle shifts in optical elastography of biological tissues,” Journal of Biomedical Optics 6(4), 418–426 (2001).
    [Crossref] [PubMed]
  13. D.D. Duncan and S.J. Kirkpatrick, “Performance analysis of a maximum-likelihood speckle motion estimator,” Optics Express 10(18), 927–941 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-18-927.
    [Crossref] [PubMed]
  14. J. P. Lewis, Fast Template Matching, Vision Interface, 120–123 (1995).
  15. D. Huang, E.A. Swanson, and C.P. Lin, et al., “Optical coherence tomography,” Science 254, 11781181 (1991).
    [Crossref]
  16. G.J. Tearney, M.E. Brezinski, and B.E. Bouma, et al., “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 20372039 (1997).
    [Crossref]
  17. B.E. Bouma and G.J. Tearney, “Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography,” Opt Lett. 24, 531533 (1999).
    [Crossref]

2003 (2)

M.R. Kaazempur-Mofrad, H.F. Younis, S. Patel, A.G. Isasi, R.C. Chan, D.P. Hinton, R.T. Lee, and R.D. Kamm, “Cyclic Strain in Human Carotid Bifurcation and its Potential Correlation to Atherogenesis: Idealized and Anatomically-Realistic Models,” Journal of Engineering Mathematics 47(3–4), 299–314 (2003).
[Crossref]

J.A. Schaar, C.L. Korte de, F. Mastik, C. Strijder, G. Pasterkamp, E. Boersma, P.W. Serruys, and A.F.W. van der Steen, “Characterizing vulnerable plaque features with intravascular elastography,” Circulation 108, 1–6 (2003).
[Crossref]

2002 (2)

I.K. Jang, B.E. Bouma, and D.H. Kang, et al., “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J Am Coll Cardiol. 39, 604609 (2002).
[Crossref]

D.D. Duncan and S.J. Kirkpatrick, “Performance analysis of a maximum-likelihood speckle motion estimator,” Optics Express 10(18), 927–941 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-18-927.
[Crossref] [PubMed]

2001 (3)

M.M. Doyley, F. Mastik, C.L. Korte de, S.G. Carlier, E.I. Cespedes, P.W. Serruys, N. Bom, and A.F.W. van der Steen, “Advancing intravascular ultrasonic palpation toward clinical applications,” Ultrasound in Med. & Biol. 27(11), 1471–1480 (2001).
[Crossref]

D.D. Duncan and S.J. Kirkpatrick, “Processing algorithms for tracking speckle shifts in optical elastography of biological tissues,” Journal of Biomedical Optics 6(4), 418–426 (2001).
[Crossref] [PubMed]

R.T. Lee, C. Yamamoto, Y. Feng, S. Potter-Perigo, W.H. Briggs, K.T. Landschulz, T.G. Turi, J.F. Thompson, P. Libby, and T.N. Wight, “Mechanical strain induces specific changes in the synthesis and organization of proteogly-cans by vascular smooth muscle cells,” J. Biol. Chem. 276, 13847–51 (2001).
[PubMed]

2000 (1)

C.L. de Korte, A.F.W. van der Steen, E.I. Cespedes, G. Pasterkamp, S.G. Carlier, F. Mastik, A.H. Schoneveld, P.W. Serruys, and N. Bom, “Characterization of plaque components and vulnerability with intravascular ultrasound elastography,” Phys. Med. Biol. 45, 1465–1475 (2000).
[Crossref] [PubMed]

1999 (1)

B.E. Bouma and G.J. Tearney, “Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography,” Opt Lett. 24, 531533 (1999).
[Crossref]

1998 (2)

J.M. Schmitt, “Optical Coherence Tomography (OCT): a review,” IEEE Journal of Selected Topics in Quantum Electronics 5(4), 1205–1215 (1998).
[Crossref]

J.M. Schmitt, “OCT Elastography: Imaging microscopic deformation and strain of tissue,” Optics Express 3, 199–211 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-199.
[Crossref] [PubMed]

1997 (1)

G.J. Tearney, M.E. Brezinski, and B.E. Bouma, et al., “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 20372039 (1997).
[Crossref]

1996 (1)

R.T. Lee, F.J. Schoen, H.M. Loree, M.W. Lark, and P. Libby, “Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis. Implications for plaque rupture,” Arterioscler. Thromb. Vasc. Biol. 16, 1070–1073 (1996).
[Crossref] [PubMed]

1993 (1)

G.C. Cheng, H.M. Loree, R.D. Kamm, M.C. Fishbein, and R.T. Lee, “Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation,” Circulation 87(4), 1179–1187 (1993).
[Crossref] [PubMed]

1991 (2)

J. Ophir, E.I. Cspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity in biological tissues,” Ultrason. Imag. 13(2), 111134 (1991).
[Crossref]

D. Huang, E.A. Swanson, and C.P. Lin, et al., “Optical coherence tomography,” Science 254, 11781181 (1991).
[Crossref]

Boersma, E.

J.A. Schaar, C.L. Korte de, F. Mastik, C. Strijder, G. Pasterkamp, E. Boersma, P.W. Serruys, and A.F.W. van der Steen, “Characterizing vulnerable plaque features with intravascular elastography,” Circulation 108, 1–6 (2003).
[Crossref]

Bom, N.

M.M. Doyley, F. Mastik, C.L. Korte de, S.G. Carlier, E.I. Cespedes, P.W. Serruys, N. Bom, and A.F.W. van der Steen, “Advancing intravascular ultrasonic palpation toward clinical applications,” Ultrasound in Med. & Biol. 27(11), 1471–1480 (2001).
[Crossref]

C.L. de Korte, A.F.W. van der Steen, E.I. Cespedes, G. Pasterkamp, S.G. Carlier, F. Mastik, A.H. Schoneveld, P.W. Serruys, and N. Bom, “Characterization of plaque components and vulnerability with intravascular ultrasound elastography,” Phys. Med. Biol. 45, 1465–1475 (2000).
[Crossref] [PubMed]

Bouma, B.E.

I.K. Jang, B.E. Bouma, and D.H. Kang, et al., “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J Am Coll Cardiol. 39, 604609 (2002).
[Crossref]

B.E. Bouma and G.J. Tearney, “Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography,” Opt Lett. 24, 531533 (1999).
[Crossref]

G.J. Tearney, M.E. Brezinski, and B.E. Bouma, et al., “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 20372039 (1997).
[Crossref]

Brezinski, M.E.

G.J. Tearney, M.E. Brezinski, and B.E. Bouma, et al., “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 20372039 (1997).
[Crossref]

Briggs, W.H.

R.T. Lee, C. Yamamoto, Y. Feng, S. Potter-Perigo, W.H. Briggs, K.T. Landschulz, T.G. Turi, J.F. Thompson, P. Libby, and T.N. Wight, “Mechanical strain induces specific changes in the synthesis and organization of proteogly-cans by vascular smooth muscle cells,” J. Biol. Chem. 276, 13847–51 (2001).
[PubMed]

Carlier, S.G.

M.M. Doyley, F. Mastik, C.L. Korte de, S.G. Carlier, E.I. Cespedes, P.W. Serruys, N. Bom, and A.F.W. van der Steen, “Advancing intravascular ultrasonic palpation toward clinical applications,” Ultrasound in Med. & Biol. 27(11), 1471–1480 (2001).
[Crossref]

C.L. de Korte, A.F.W. van der Steen, E.I. Cespedes, G. Pasterkamp, S.G. Carlier, F. Mastik, A.H. Schoneveld, P.W. Serruys, and N. Bom, “Characterization of plaque components and vulnerability with intravascular ultrasound elastography,” Phys. Med. Biol. 45, 1465–1475 (2000).
[Crossref] [PubMed]

Cespedes, E.I.

M.M. Doyley, F. Mastik, C.L. Korte de, S.G. Carlier, E.I. Cespedes, P.W. Serruys, N. Bom, and A.F.W. van der Steen, “Advancing intravascular ultrasonic palpation toward clinical applications,” Ultrasound in Med. & Biol. 27(11), 1471–1480 (2001).
[Crossref]

C.L. de Korte, A.F.W. van der Steen, E.I. Cespedes, G. Pasterkamp, S.G. Carlier, F. Mastik, A.H. Schoneveld, P.W. Serruys, and N. Bom, “Characterization of plaque components and vulnerability with intravascular ultrasound elastography,” Phys. Med. Biol. 45, 1465–1475 (2000).
[Crossref] [PubMed]

Chan, R.C.

M.R. Kaazempur-Mofrad, H.F. Younis, S. Patel, A.G. Isasi, R.C. Chan, D.P. Hinton, R.T. Lee, and R.D. Kamm, “Cyclic Strain in Human Carotid Bifurcation and its Potential Correlation to Atherogenesis: Idealized and Anatomically-Realistic Models,” Journal of Engineering Mathematics 47(3–4), 299–314 (2003).
[Crossref]

Cheng, G.C.

G.C. Cheng, H.M. Loree, R.D. Kamm, M.C. Fishbein, and R.T. Lee, “Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation,” Circulation 87(4), 1179–1187 (1993).
[Crossref] [PubMed]

Cspedes, E.I.

J. Ophir, E.I. Cspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity in biological tissues,” Ultrason. Imag. 13(2), 111134 (1991).
[Crossref]

Doyley, M.M.

M.M. Doyley, F. Mastik, C.L. Korte de, S.G. Carlier, E.I. Cespedes, P.W. Serruys, N. Bom, and A.F.W. van der Steen, “Advancing intravascular ultrasonic palpation toward clinical applications,” Ultrasound in Med. & Biol. 27(11), 1471–1480 (2001).
[Crossref]

Duncan, D.D.

D.D. Duncan and S.J. Kirkpatrick, “Performance analysis of a maximum-likelihood speckle motion estimator,” Optics Express 10(18), 927–941 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-18-927.
[Crossref] [PubMed]

D.D. Duncan and S.J. Kirkpatrick, “Processing algorithms for tracking speckle shifts in optical elastography of biological tissues,” Journal of Biomedical Optics 6(4), 418–426 (2001).
[Crossref] [PubMed]

Feng, Y.

R.T. Lee, C. Yamamoto, Y. Feng, S. Potter-Perigo, W.H. Briggs, K.T. Landschulz, T.G. Turi, J.F. Thompson, P. Libby, and T.N. Wight, “Mechanical strain induces specific changes in the synthesis and organization of proteogly-cans by vascular smooth muscle cells,” J. Biol. Chem. 276, 13847–51 (2001).
[PubMed]

Fishbein, M.C.

G.C. Cheng, H.M. Loree, R.D. Kamm, M.C. Fishbein, and R.T. Lee, “Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation,” Circulation 87(4), 1179–1187 (1993).
[Crossref] [PubMed]

Hinton, D.P.

M.R. Kaazempur-Mofrad, H.F. Younis, S. Patel, A.G. Isasi, R.C. Chan, D.P. Hinton, R.T. Lee, and R.D. Kamm, “Cyclic Strain in Human Carotid Bifurcation and its Potential Correlation to Atherogenesis: Idealized and Anatomically-Realistic Models,” Journal of Engineering Mathematics 47(3–4), 299–314 (2003).
[Crossref]

Huang, D.

D. Huang, E.A. Swanson, and C.P. Lin, et al., “Optical coherence tomography,” Science 254, 11781181 (1991).
[Crossref]

Isasi, A.G.

M.R. Kaazempur-Mofrad, H.F. Younis, S. Patel, A.G. Isasi, R.C. Chan, D.P. Hinton, R.T. Lee, and R.D. Kamm, “Cyclic Strain in Human Carotid Bifurcation and its Potential Correlation to Atherogenesis: Idealized and Anatomically-Realistic Models,” Journal of Engineering Mathematics 47(3–4), 299–314 (2003).
[Crossref]

Jang, I.K.

I.K. Jang, B.E. Bouma, and D.H. Kang, et al., “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J Am Coll Cardiol. 39, 604609 (2002).
[Crossref]

Kaazempur-Mofrad, M.R.

M.R. Kaazempur-Mofrad, H.F. Younis, S. Patel, A.G. Isasi, R.C. Chan, D.P. Hinton, R.T. Lee, and R.D. Kamm, “Cyclic Strain in Human Carotid Bifurcation and its Potential Correlation to Atherogenesis: Idealized and Anatomically-Realistic Models,” Journal of Engineering Mathematics 47(3–4), 299–314 (2003).
[Crossref]

Kamm, R.D.

M.R. Kaazempur-Mofrad, H.F. Younis, S. Patel, A.G. Isasi, R.C. Chan, D.P. Hinton, R.T. Lee, and R.D. Kamm, “Cyclic Strain in Human Carotid Bifurcation and its Potential Correlation to Atherogenesis: Idealized and Anatomically-Realistic Models,” Journal of Engineering Mathematics 47(3–4), 299–314 (2003).
[Crossref]

G.C. Cheng, H.M. Loree, R.D. Kamm, M.C. Fishbein, and R.T. Lee, “Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation,” Circulation 87(4), 1179–1187 (1993).
[Crossref] [PubMed]

Kang, D.H.

I.K. Jang, B.E. Bouma, and D.H. Kang, et al., “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J Am Coll Cardiol. 39, 604609 (2002).
[Crossref]

Kirkpatrick, S.J.

D.D. Duncan and S.J. Kirkpatrick, “Performance analysis of a maximum-likelihood speckle motion estimator,” Optics Express 10(18), 927–941 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-18-927.
[Crossref] [PubMed]

D.D. Duncan and S.J. Kirkpatrick, “Processing algorithms for tracking speckle shifts in optical elastography of biological tissues,” Journal of Biomedical Optics 6(4), 418–426 (2001).
[Crossref] [PubMed]

Korte, C.L. de

C.L. de Korte, A.F.W. van der Steen, E.I. Cespedes, G. Pasterkamp, S.G. Carlier, F. Mastik, A.H. Schoneveld, P.W. Serruys, and N. Bom, “Characterization of plaque components and vulnerability with intravascular ultrasound elastography,” Phys. Med. Biol. 45, 1465–1475 (2000).
[Crossref] [PubMed]

Korte de, C.L.

J.A. Schaar, C.L. Korte de, F. Mastik, C. Strijder, G. Pasterkamp, E. Boersma, P.W. Serruys, and A.F.W. van der Steen, “Characterizing vulnerable plaque features with intravascular elastography,” Circulation 108, 1–6 (2003).
[Crossref]

M.M. Doyley, F. Mastik, C.L. Korte de, S.G. Carlier, E.I. Cespedes, P.W. Serruys, N. Bom, and A.F.W. van der Steen, “Advancing intravascular ultrasonic palpation toward clinical applications,” Ultrasound in Med. & Biol. 27(11), 1471–1480 (2001).
[Crossref]

Landschulz, K.T.

R.T. Lee, C. Yamamoto, Y. Feng, S. Potter-Perigo, W.H. Briggs, K.T. Landschulz, T.G. Turi, J.F. Thompson, P. Libby, and T.N. Wight, “Mechanical strain induces specific changes in the synthesis and organization of proteogly-cans by vascular smooth muscle cells,” J. Biol. Chem. 276, 13847–51 (2001).
[PubMed]

Lark, M.W.

R.T. Lee, F.J. Schoen, H.M. Loree, M.W. Lark, and P. Libby, “Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis. Implications for plaque rupture,” Arterioscler. Thromb. Vasc. Biol. 16, 1070–1073 (1996).
[Crossref] [PubMed]

Lee, R.T.

M.R. Kaazempur-Mofrad, H.F. Younis, S. Patel, A.G. Isasi, R.C. Chan, D.P. Hinton, R.T. Lee, and R.D. Kamm, “Cyclic Strain in Human Carotid Bifurcation and its Potential Correlation to Atherogenesis: Idealized and Anatomically-Realistic Models,” Journal of Engineering Mathematics 47(3–4), 299–314 (2003).
[Crossref]

R.T. Lee, C. Yamamoto, Y. Feng, S. Potter-Perigo, W.H. Briggs, K.T. Landschulz, T.G. Turi, J.F. Thompson, P. Libby, and T.N. Wight, “Mechanical strain induces specific changes in the synthesis and organization of proteogly-cans by vascular smooth muscle cells,” J. Biol. Chem. 276, 13847–51 (2001).
[PubMed]

R.T. Lee, F.J. Schoen, H.M. Loree, M.W. Lark, and P. Libby, “Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis. Implications for plaque rupture,” Arterioscler. Thromb. Vasc. Biol. 16, 1070–1073 (1996).
[Crossref] [PubMed]

G.C. Cheng, H.M. Loree, R.D. Kamm, M.C. Fishbein, and R.T. Lee, “Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation,” Circulation 87(4), 1179–1187 (1993).
[Crossref] [PubMed]

Lewis, J. P.

J. P. Lewis, Fast Template Matching, Vision Interface, 120–123 (1995).

Li, X.

J. Ophir, E.I. Cspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity in biological tissues,” Ultrason. Imag. 13(2), 111134 (1991).
[Crossref]

Libby, P.

R.T. Lee, C. Yamamoto, Y. Feng, S. Potter-Perigo, W.H. Briggs, K.T. Landschulz, T.G. Turi, J.F. Thompson, P. Libby, and T.N. Wight, “Mechanical strain induces specific changes in the synthesis and organization of proteogly-cans by vascular smooth muscle cells,” J. Biol. Chem. 276, 13847–51 (2001).
[PubMed]

R.T. Lee, F.J. Schoen, H.M. Loree, M.W. Lark, and P. Libby, “Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis. Implications for plaque rupture,” Arterioscler. Thromb. Vasc. Biol. 16, 1070–1073 (1996).
[Crossref] [PubMed]

Lin, C.P.

D. Huang, E.A. Swanson, and C.P. Lin, et al., “Optical coherence tomography,” Science 254, 11781181 (1991).
[Crossref]

Loree, H.M.

R.T. Lee, F.J. Schoen, H.M. Loree, M.W. Lark, and P. Libby, “Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis. Implications for plaque rupture,” Arterioscler. Thromb. Vasc. Biol. 16, 1070–1073 (1996).
[Crossref] [PubMed]

G.C. Cheng, H.M. Loree, R.D. Kamm, M.C. Fishbein, and R.T. Lee, “Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation,” Circulation 87(4), 1179–1187 (1993).
[Crossref] [PubMed]

Mastik, F.

J.A. Schaar, C.L. Korte de, F. Mastik, C. Strijder, G. Pasterkamp, E. Boersma, P.W. Serruys, and A.F.W. van der Steen, “Characterizing vulnerable plaque features with intravascular elastography,” Circulation 108, 1–6 (2003).
[Crossref]

M.M. Doyley, F. Mastik, C.L. Korte de, S.G. Carlier, E.I. Cespedes, P.W. Serruys, N. Bom, and A.F.W. van der Steen, “Advancing intravascular ultrasonic palpation toward clinical applications,” Ultrasound in Med. & Biol. 27(11), 1471–1480 (2001).
[Crossref]

C.L. de Korte, A.F.W. van der Steen, E.I. Cespedes, G. Pasterkamp, S.G. Carlier, F. Mastik, A.H. Schoneveld, P.W. Serruys, and N. Bom, “Characterization of plaque components and vulnerability with intravascular ultrasound elastography,” Phys. Med. Biol. 45, 1465–1475 (2000).
[Crossref] [PubMed]

Ophir, J.

J. Ophir, E.I. Cspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity in biological tissues,” Ultrason. Imag. 13(2), 111134 (1991).
[Crossref]

Pasterkamp, G.

J.A. Schaar, C.L. Korte de, F. Mastik, C. Strijder, G. Pasterkamp, E. Boersma, P.W. Serruys, and A.F.W. van der Steen, “Characterizing vulnerable plaque features with intravascular elastography,” Circulation 108, 1–6 (2003).
[Crossref]

C.L. de Korte, A.F.W. van der Steen, E.I. Cespedes, G. Pasterkamp, S.G. Carlier, F. Mastik, A.H. Schoneveld, P.W. Serruys, and N. Bom, “Characterization of plaque components and vulnerability with intravascular ultrasound elastography,” Phys. Med. Biol. 45, 1465–1475 (2000).
[Crossref] [PubMed]

Patel, S.

M.R. Kaazempur-Mofrad, H.F. Younis, S. Patel, A.G. Isasi, R.C. Chan, D.P. Hinton, R.T. Lee, and R.D. Kamm, “Cyclic Strain in Human Carotid Bifurcation and its Potential Correlation to Atherogenesis: Idealized and Anatomically-Realistic Models,” Journal of Engineering Mathematics 47(3–4), 299–314 (2003).
[Crossref]

Ponnekanti, H.

J. Ophir, E.I. Cspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity in biological tissues,” Ultrason. Imag. 13(2), 111134 (1991).
[Crossref]

Potter-Perigo, S.

R.T. Lee, C. Yamamoto, Y. Feng, S. Potter-Perigo, W.H. Briggs, K.T. Landschulz, T.G. Turi, J.F. Thompson, P. Libby, and T.N. Wight, “Mechanical strain induces specific changes in the synthesis and organization of proteogly-cans by vascular smooth muscle cells,” J. Biol. Chem. 276, 13847–51 (2001).
[PubMed]

Schaar, J.A.

J.A. Schaar, C.L. Korte de, F. Mastik, C. Strijder, G. Pasterkamp, E. Boersma, P.W. Serruys, and A.F.W. van der Steen, “Characterizing vulnerable plaque features with intravascular elastography,” Circulation 108, 1–6 (2003).
[Crossref]

Schmitt, J.M.

J.M. Schmitt, “Optical Coherence Tomography (OCT): a review,” IEEE Journal of Selected Topics in Quantum Electronics 5(4), 1205–1215 (1998).
[Crossref]

J.M. Schmitt, “OCT Elastography: Imaging microscopic deformation and strain of tissue,” Optics Express 3, 199–211 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-199.
[Crossref] [PubMed]

Schoen, F.J.

R.T. Lee, F.J. Schoen, H.M. Loree, M.W. Lark, and P. Libby, “Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis. Implications for plaque rupture,” Arterioscler. Thromb. Vasc. Biol. 16, 1070–1073 (1996).
[Crossref] [PubMed]

Schoneveld, A.H.

C.L. de Korte, A.F.W. van der Steen, E.I. Cespedes, G. Pasterkamp, S.G. Carlier, F. Mastik, A.H. Schoneveld, P.W. Serruys, and N. Bom, “Characterization of plaque components and vulnerability with intravascular ultrasound elastography,” Phys. Med. Biol. 45, 1465–1475 (2000).
[Crossref] [PubMed]

Serruys, P.W.

J.A. Schaar, C.L. Korte de, F. Mastik, C. Strijder, G. Pasterkamp, E. Boersma, P.W. Serruys, and A.F.W. van der Steen, “Characterizing vulnerable plaque features with intravascular elastography,” Circulation 108, 1–6 (2003).
[Crossref]

M.M. Doyley, F. Mastik, C.L. Korte de, S.G. Carlier, E.I. Cespedes, P.W. Serruys, N. Bom, and A.F.W. van der Steen, “Advancing intravascular ultrasonic palpation toward clinical applications,” Ultrasound in Med. & Biol. 27(11), 1471–1480 (2001).
[Crossref]

C.L. de Korte, A.F.W. van der Steen, E.I. Cespedes, G. Pasterkamp, S.G. Carlier, F. Mastik, A.H. Schoneveld, P.W. Serruys, and N. Bom, “Characterization of plaque components and vulnerability with intravascular ultrasound elastography,” Phys. Med. Biol. 45, 1465–1475 (2000).
[Crossref] [PubMed]

Steen, A.F.W. van der

J.A. Schaar, C.L. Korte de, F. Mastik, C. Strijder, G. Pasterkamp, E. Boersma, P.W. Serruys, and A.F.W. van der Steen, “Characterizing vulnerable plaque features with intravascular elastography,” Circulation 108, 1–6 (2003).
[Crossref]

M.M. Doyley, F. Mastik, C.L. Korte de, S.G. Carlier, E.I. Cespedes, P.W. Serruys, N. Bom, and A.F.W. van der Steen, “Advancing intravascular ultrasonic palpation toward clinical applications,” Ultrasound in Med. & Biol. 27(11), 1471–1480 (2001).
[Crossref]

C.L. de Korte, A.F.W. van der Steen, E.I. Cespedes, G. Pasterkamp, S.G. Carlier, F. Mastik, A.H. Schoneveld, P.W. Serruys, and N. Bom, “Characterization of plaque components and vulnerability with intravascular ultrasound elastography,” Phys. Med. Biol. 45, 1465–1475 (2000).
[Crossref] [PubMed]

Strijder, C.

J.A. Schaar, C.L. Korte de, F. Mastik, C. Strijder, G. Pasterkamp, E. Boersma, P.W. Serruys, and A.F.W. van der Steen, “Characterizing vulnerable plaque features with intravascular elastography,” Circulation 108, 1–6 (2003).
[Crossref]

Swanson, E.A.

D. Huang, E.A. Swanson, and C.P. Lin, et al., “Optical coherence tomography,” Science 254, 11781181 (1991).
[Crossref]

Tearney, G.J.

B.E. Bouma and G.J. Tearney, “Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography,” Opt Lett. 24, 531533 (1999).
[Crossref]

G.J. Tearney, M.E. Brezinski, and B.E. Bouma, et al., “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 20372039 (1997).
[Crossref]

Thompson, J.F.

R.T. Lee, C. Yamamoto, Y. Feng, S. Potter-Perigo, W.H. Briggs, K.T. Landschulz, T.G. Turi, J.F. Thompson, P. Libby, and T.N. Wight, “Mechanical strain induces specific changes in the synthesis and organization of proteogly-cans by vascular smooth muscle cells,” J. Biol. Chem. 276, 13847–51 (2001).
[PubMed]

Turi, T.G.

R.T. Lee, C. Yamamoto, Y. Feng, S. Potter-Perigo, W.H. Briggs, K.T. Landschulz, T.G. Turi, J.F. Thompson, P. Libby, and T.N. Wight, “Mechanical strain induces specific changes in the synthesis and organization of proteogly-cans by vascular smooth muscle cells,” J. Biol. Chem. 276, 13847–51 (2001).
[PubMed]

Wight, T.N.

R.T. Lee, C. Yamamoto, Y. Feng, S. Potter-Perigo, W.H. Briggs, K.T. Landschulz, T.G. Turi, J.F. Thompson, P. Libby, and T.N. Wight, “Mechanical strain induces specific changes in the synthesis and organization of proteogly-cans by vascular smooth muscle cells,” J. Biol. Chem. 276, 13847–51 (2001).
[PubMed]

Yamamoto, C.

R.T. Lee, C. Yamamoto, Y. Feng, S. Potter-Perigo, W.H. Briggs, K.T. Landschulz, T.G. Turi, J.F. Thompson, P. Libby, and T.N. Wight, “Mechanical strain induces specific changes in the synthesis and organization of proteogly-cans by vascular smooth muscle cells,” J. Biol. Chem. 276, 13847–51 (2001).
[PubMed]

Yazdi, Y.

J. Ophir, E.I. Cspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity in biological tissues,” Ultrason. Imag. 13(2), 111134 (1991).
[Crossref]

Younis, H.F.

M.R. Kaazempur-Mofrad, H.F. Younis, S. Patel, A.G. Isasi, R.C. Chan, D.P. Hinton, R.T. Lee, and R.D. Kamm, “Cyclic Strain in Human Carotid Bifurcation and its Potential Correlation to Atherogenesis: Idealized and Anatomically-Realistic Models,” Journal of Engineering Mathematics 47(3–4), 299–314 (2003).
[Crossref]

Arterioscler. Thromb. Vasc. Biol. (1)

R.T. Lee, F.J. Schoen, H.M. Loree, M.W. Lark, and P. Libby, “Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis. Implications for plaque rupture,” Arterioscler. Thromb. Vasc. Biol. 16, 1070–1073 (1996).
[Crossref] [PubMed]

Circulation (2)

G.C. Cheng, H.M. Loree, R.D. Kamm, M.C. Fishbein, and R.T. Lee, “Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation,” Circulation 87(4), 1179–1187 (1993).
[Crossref] [PubMed]

J.A. Schaar, C.L. Korte de, F. Mastik, C. Strijder, G. Pasterkamp, E. Boersma, P.W. Serruys, and A.F.W. van der Steen, “Characterizing vulnerable plaque features with intravascular elastography,” Circulation 108, 1–6 (2003).
[Crossref]

IEEE Journal of Selected Topics in Quantum Electronics (1)

J.M. Schmitt, “Optical Coherence Tomography (OCT): a review,” IEEE Journal of Selected Topics in Quantum Electronics 5(4), 1205–1215 (1998).
[Crossref]

J Am Coll Cardiol. (1)

I.K. Jang, B.E. Bouma, and D.H. Kang, et al., “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J Am Coll Cardiol. 39, 604609 (2002).
[Crossref]

J. Biol. Chem. (1)

R.T. Lee, C. Yamamoto, Y. Feng, S. Potter-Perigo, W.H. Briggs, K.T. Landschulz, T.G. Turi, J.F. Thompson, P. Libby, and T.N. Wight, “Mechanical strain induces specific changes in the synthesis and organization of proteogly-cans by vascular smooth muscle cells,” J. Biol. Chem. 276, 13847–51 (2001).
[PubMed]

Journal of Biomedical Optics (1)

D.D. Duncan and S.J. Kirkpatrick, “Processing algorithms for tracking speckle shifts in optical elastography of biological tissues,” Journal of Biomedical Optics 6(4), 418–426 (2001).
[Crossref] [PubMed]

Journal of Engineering Mathematics (1)

M.R. Kaazempur-Mofrad, H.F. Younis, S. Patel, A.G. Isasi, R.C. Chan, D.P. Hinton, R.T. Lee, and R.D. Kamm, “Cyclic Strain in Human Carotid Bifurcation and its Potential Correlation to Atherogenesis: Idealized and Anatomically-Realistic Models,” Journal of Engineering Mathematics 47(3–4), 299–314 (2003).
[Crossref]

Opt Lett. (1)

B.E. Bouma and G.J. Tearney, “Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography,” Opt Lett. 24, 531533 (1999).
[Crossref]

Optics Express (2)

D.D. Duncan and S.J. Kirkpatrick, “Performance analysis of a maximum-likelihood speckle motion estimator,” Optics Express 10(18), 927–941 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-18-927.
[Crossref] [PubMed]

J.M. Schmitt, “OCT Elastography: Imaging microscopic deformation and strain of tissue,” Optics Express 3, 199–211 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-199.
[Crossref] [PubMed]

Phys. Med. Biol. (1)

C.L. de Korte, A.F.W. van der Steen, E.I. Cespedes, G. Pasterkamp, S.G. Carlier, F. Mastik, A.H. Schoneveld, P.W. Serruys, and N. Bom, “Characterization of plaque components and vulnerability with intravascular ultrasound elastography,” Phys. Med. Biol. 45, 1465–1475 (2000).
[Crossref] [PubMed]

Science (2)

D. Huang, E.A. Swanson, and C.P. Lin, et al., “Optical coherence tomography,” Science 254, 11781181 (1991).
[Crossref]

G.J. Tearney, M.E. Brezinski, and B.E. Bouma, et al., “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 20372039 (1997).
[Crossref]

Ultrason. Imag. (1)

J. Ophir, E.I. Cspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity in biological tissues,” Ultrason. Imag. 13(2), 111134 (1991).
[Crossref]

Ultrasound in Med. & Biol. (1)

M.M. Doyley, F. Mastik, C.L. Korte de, S.G. Carlier, E.I. Cespedes, P.W. Serruys, N. Bom, and A.F.W. van der Steen, “Advancing intravascular ultrasonic palpation toward clinical applications,” Ultrasound in Med. & Biol. 27(11), 1471–1480 (2001).
[Crossref]

Other (1)

J. P. Lewis, Fast Template Matching, Vision Interface, 120–123 (1995).

Supplementary Material (3)

» Media 1: MOV (458 KB)     
» Media 2: MOV (458 KB)     
» Media 3: MOV (563 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Block diagram illustrating multi-resolution velocity field estimation

Fig. 2.
Fig. 2.

(a) Finite element geometry. (b) Finite element mesh.

Fig. 3.
Fig. 3.

(a) A comparison of a simulated PSF with fringe measurements from our OCT system, (b) OCT image simulation of an inclusion within a tissue block after demodulation.

Fig. 4.
Fig. 4.

Benchtop OCT imaging system for XY scanning of mechanically-loaded specimens.

Fig. 5.
Fig. 5.

Movie clips showing simulated axial compression (vertical loading in the downward direction) of a 500μm inclusion with (a) more compliant (464KB Quicktime movie) and (b) stiffer material properties than the surrounding tissue block (464KB Quicktime movie).

Fig. 6.
Fig. 6.

Axial velocity fields for a compliant inclusion. (a) True axial velocities from finite element modeling. (b) Axial velocity estimates from conventional motion tracking. c) Axial velocity estimates from multi-resolution variational method. Axial compression was applied in the downward direction.

Fig. 7.
Fig. 7.

Axial velocity fields for a stiff inclusion. (a) True axial velocities from finite element modeling. (b) Axial velocity estimates from conventional motion tracking. c) Axial velocity estimates from multi-resolution variational method. Axial compression was applied in the downward direction.

Fig. 8.
Fig. 8.

Axial strain fields for a compliant inclusion. (a) True axial strains from finite element modeling. (b) Axial strain estimates from conventional motion tracking. c) Axial strain estimates from multi-resolution variational method. Axial compression was applied in the downward direction.

Fig. 9.
Fig. 9.

Axial strain fields for a stiff inclusion. (a) True axial strains from finite element modeling. (b) Axial strain estimates from conventional motion tracking. c) Axial strain estimates from multi-resolution variational method. Axial compression was applied in the downward direction.

Fig. 10.
Fig. 10.

Lesion detectability as a function of noise-induced decorrelation for (a) the compliant inclusion (correlation coefficients are 0.95, 0.79, 0.54 from left to right respectively) and (b) the stiff inclusion (correlation coefficients are 0.95, 0.81, 0.55 from left to right respectively).

Fig. 11.
Fig. 11.

Estimation errors in the stiff inclusion: (a) Root-mean-square velocity estimation error as a function of noise-induced decorrelation. (b) Root-mean-square strain estimation error as a function of noise-induced decorrelation.

Fig. 12.
Fig. 12.

OCT imaging of an aortic specimen undergoing lateral (right-to-left) motion (568KB Quicktime movie). Regions of the image outside the aorta have been masked out.

Fig. 13.
Fig. 13.

Estimated lateral velocity fields for an aortic specimen undergoing lateral stretching (right-to-left in the imaging plane) a) from the conventional method, and b) from the variational method.

Fig. 14.
Fig. 14.

Estimated lateral strain fields for an aortic specimen undergoing lateral stretching (right-to-left in the imaging plane) a) from the conventional method, and b) from the variational method.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = exp ( 2 μ s ¯ y ) [ σ b ( x , y ) * h ( x , y ) ]
h ( x , y ) = Γ ( y ) p ( x )
Γ ( y ) = Re [ E s ( y′ ) E s ( y′ + y ) ] = exp ( ( πy ln 2 Δλ λ 0 2 ) 2 ) cos ( 2 πy / λ 0 )
p ( x ) = exp [ 1 2 ( πDx λ 0 f ) 2 ]
I R ( x , y ) = exp ( 2 μ ¯ s y ) [ σ b δ ( x x 0 , x y 0 ) * h ( x , y ) ]
= exp ( 2 μ ¯ s y ) [ σ b δ ( x x 0 , y y 0 ) ]
I S ( x , y ) = exp ( 2 μ s ¯ y ) [ σ b δ ( x x 0 u , x y 0 v ) * h ( x , y ) ]
= exp ( 2 μ s ¯ y ) [ σ b h ( x x 0 u , y y 0 v ) ]
[ u ̂ v ̂ ] = arg max [ u v ] ρ x , y ( u , v )
ρ x , y ( u , v ) =
M / 2 M / 2 N / 2 N / 2 [ I R ( x′ x , y′ y ) μ R ] [ I S ( x′ x u , y′ y v ) μ S ] dx dy′ [ M / 2 M / 2 N / 2 N / 2 [ I R ( x′ x , y′ y ) μ R ] 2 dx dy′ M / 2 M / 2 N / 2 N / 2 [ I S ( x′ x u , y′ y v ) μ S ] dx dy′ ] 1 / 2
E ( V ( x , y ) ) = a E D ( V ( x , y ) ) + b E S ( V ( x , y ) ) + c E I ( V ( x , y ) )
E D ( V ( x , y ) ) = ρ x , y ( V ( x , y ) ) dxdy
E S ( V ( x , y ) ) = 2 V ( x , y ) 2 dxdy
E I ( V ( x , y ) ) = ·V ( x , y ) 2 dxdy
V ̂ ( x , y ) = arg min V ( x , y ) = [ u ( x , y ) v ( x , y ) ] { a E D ( V ( x , y ) ) + b E S ( V ( x , y ) ) + c E I ( V ( x , y ) ) }
σ b ( x , y , t + 1 ) = σ b ( x u ( x , y ) , y v ( x , y ) , t )
I n ( x , y , t ) = I ( x , y , t ) + nI ( x , y , t )
F = [ 1 + u x u y v x 1 + v y ]
E = [ ε xx ε xy ε xy ε yy ] = 1 2 ( F T + F 2 I )
RMS velocity = 1 N k = 1 N ( v k v k , real v k , real ) 2 RMS strain = 1 N k = 1 N ( ε k ε k , real ε k , real ) 2

Metrics