Abstract

We demonstrate the high sensitivity of gas sensing using a novel air-guiding photonic bandgap fiber. The bandgap fiber is spliced to a standard single-mode fiber at the input end for easy coupling and filled with gas through the other end placed in a vacuum chamber. The technique is applied to characterize absorption lines of acetylene and hydrogen cyanide employing a tunable laser as light source. Measurements with a LED are also performed for comparison. Detection of weakly absorbing gases such as methane and ammonia is explored.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. Sudo, I. Yokohama, H Yasaka, Y. Sakai, and T. Ikegami, �??Optical fiber with sharp optical absorption by vibrational-rotational absorption of C2H2 molecules,�?? IEEE Photonics Technol. Lett. 2, 128-131 (1990).
    [CrossRef]
  2. W. Jin, G. Stewart, and B. Culshaw, �??Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,�?? Sens. and Act. B 38-39, 42-47 (1997).
    [CrossRef]
  3. J. Harrington, �??A review of IR transmitting hollow waveguides,�?? Fiber Integr. Opt. 19, 211�??227 (2000).
    [CrossRef]
  4. T. M. Monro, D. J. Richardson, and P. J. Bennett, �??Developing holey fibres for evanescent field devices,�?? Electron. Lett. 35, 1188-1189 (1999).
    [CrossRef]
  5. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, �??Sensing with microstructured optical fibres,�?? Meas. Sci. Technol. 12, 854-858 (2001).
    [CrossRef]
  6. Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, �??Evanescent-wave gas sensing using microstructure fiber,�?? Opt. Eng. 41, 8-9 (2002).
    [CrossRef]
  7. Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, �??Design and modeling of a photonic crystal fiber gas sensor,�?? Appl. Opt. 42, 3509-3515 (2003).
    [CrossRef] [PubMed]
  8. G. Pickrell, W. Peng, and A. Wang, �??Random-hole optical fiber evanescent-wave gas sensing,�?? Opt. Lett. 29, 1476-1478 (2004).
    [CrossRef] [PubMed]
  9. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, �??Single-mode photonic band gap guidance of light in air,�?? Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  10. J. Lægsgaard, N. A. Mortensen, J. Riishede, and A. Bjarklev, �??Material effects in air-guiding photonic bandgap fibers,�?? J. Opt. Soc. Am. B 20, 2046-2051 (2003).
    [CrossRef]
  11. G. Humbert, J. C. Knight, G. Bouwmans, P. S. J. Russell, D. P. Williams, P. J. Roberts, and B. J. Mangan, �??Hollow core photonic crystal fibers for beam delivery,�?? Opt. Express 12, 1477-1484 (2004).
    [CrossRef] [PubMed]
  12. B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St.J. Russell, �??Low loss (1.7 dB/km) hollow core photonic bandgap fiber,�?? in Proceedings of Optical Fiber Communication Conference, postdeadline paper PDP24, Los Angeles, USA, (2004).
  13. T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, �??Air-guiding photonic bandgap fibers: Spectral properties, macrobending loss and practical handling,�?? J. Lightwave Technol. 22, 11-15 (2004).
    [CrossRef]
  14. T. Ritari, J. Tuominen, J.C. Petersen, T.P. Hansen, and H. Ludvigsen, �??Miniature wavelength references based on gas-filled photonic bandgap fibers�??, in Proceedings of European Conference on Optical Communication, paper Mo3.3.1, Stockholm, Sweden (2004).
  15. T. Dennis, E. A. Curtis, C. W. Oates, L. Hollberg, and S. L. Gilbert, �??Wavelength references for 1300-nm wavelength-division multiplexing,�?? J. Lightwave Technol. 20, 804-810 (2002).
    [CrossRef]
  16. A. Schmohl, A. Miklós, and P. Hess, �??Detection of ammonia by photoacoustic spectroscopy with semiconductor lasers,�?? Appl. Opt. 41, 1815-1823 (2002).
    [CrossRef] [PubMed]
  17. T. J. Stephens, R. R. J. Maier, J. S. Barton, and J. D. C. Jones, �??Fused silica hollow-core photonic crystal fiber for mid-infrared transmission,�?? in Proceedings of Conference on Lasers and Electro Optics, postdeadline paper CPDD4, San Francisco, USA (2004).
  18. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, �??Chalcogenide holey fibres,�?? Electron. Lett. 36, 1998�??2000 (2000).
    [CrossRef]

Appl. Opt.

CLEO 2004

T. J. Stephens, R. R. J. Maier, J. S. Barton, and J. D. C. Jones, �??Fused silica hollow-core photonic crystal fiber for mid-infrared transmission,�?? in Proceedings of Conference on Lasers and Electro Optics, postdeadline paper CPDD4, San Francisco, USA (2004).

ECOC 2004

T. Ritari, J. Tuominen, J.C. Petersen, T.P. Hansen, and H. Ludvigsen, �??Miniature wavelength references based on gas-filled photonic bandgap fibers�??, in Proceedings of European Conference on Optical Communication, paper Mo3.3.1, Stockholm, Sweden (2004).

Electron. Lett.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, �??Chalcogenide holey fibres,�?? Electron. Lett. 36, 1998�??2000 (2000).
[CrossRef]

T. M. Monro, D. J. Richardson, and P. J. Bennett, �??Developing holey fibres for evanescent field devices,�?? Electron. Lett. 35, 1188-1189 (1999).
[CrossRef]

Fiber Integr. Opt.

J. Harrington, �??A review of IR transmitting hollow waveguides,�?? Fiber Integr. Opt. 19, 211�??227 (2000).
[CrossRef]

IEEE Photonics Technol. Lett.

S. Sudo, I. Yokohama, H Yasaka, Y. Sakai, and T. Ikegami, �??Optical fiber with sharp optical absorption by vibrational-rotational absorption of C2H2 molecules,�?? IEEE Photonics Technol. Lett. 2, 128-131 (1990).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Meas. Sci. Technol.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, �??Sensing with microstructured optical fibres,�?? Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Opt. Eng.

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, �??Evanescent-wave gas sensing using microstructure fiber,�?? Opt. Eng. 41, 8-9 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Optical Fiber Communication Conference

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St.J. Russell, �??Low loss (1.7 dB/km) hollow core photonic bandgap fiber,�?? in Proceedings of Optical Fiber Communication Conference, postdeadline paper PDP24, Los Angeles, USA, (2004).

Science

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, �??Single-mode photonic band gap guidance of light in air,�?? Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Sens. and Act. B

W. Jin, G. Stewart, and B. Culshaw, �??Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,�?? Sens. and Act. B 38-39, 42-47 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Microscope images of (a) PBF1300 and (b) PBF1500.

Fig. 2.
Fig. 2.

Spectral transmission of (a) a 2 m long PBF1300 and (b) a 3 m long PBF1500.

Fig. 3.
Fig. 3.

Experimental setup for filling PBFs with gas and absorption measurements.

Fig. 4.
Fig. 4.

Normalized transmission of 12C2H2 line at 1531.588 nm as a function of time in PBF1500 recorded using a tunable laser while filling the fiber with gas to 10 mbar.

Fig. 5.
Fig. 5.

Normalized transmission of 12C2H2 line at 1521.060 nm as a function of time in PBF1500 recorded using a tunable laser while filling the fiber with gas to 113 mbar.

Fig. 6.
Fig. 6.

Normalized absorption spectrum of the P-branch of 12C2H2 at 10 mbar in a 1 m long PBF1500 measured using a tunable laser (step size 1 pm).

Fig. 7.
Fig. 7.

Normalized absorption spectrum of the P-branch of 12C2H2 at 10 mbar in a 1 m long absorption cell measured using a tunable laser (step size 1 pm).

Fig. 8.
Fig. 8.

Normalized absorption spectra of R-branch of 12C2H2 in a 1 m long PBF1500 measured using a LED. The resolution of the OSA is 0.1 nm. The lines appear broader due to the limited resolution of the OSA.

Fig. 9.
Fig. 9.

For comparison, the same spectrum recorded using a laser (step size 1 pm) and a reduced pressure of 10 mbar.

Fig. 10.
Fig. 10.

Normalized absorption spectrum of H13CN in a 1 m long PBF1500 recorded using a LED. The resolution of the OSA is 0.1 nm.

Fig. 11.
Fig. 11.

Normalized absorption spectrum of CH4 in a 10 m long PBF1300 recorded using a LED. The resolution of the OSA is 0.1 nm.

Tables (1)

Tables Icon

Table 1. Characteristics of the PBFs.

Metrics