Abstract

Dielectric microspheres are theoretically studied to reduce the propagation loss of Si-based photonic crystal slab waveguides. Two-dimensional photonic crystal formed by etched air hole can act as a template for microsphere sedimentation. The analytical results show that the transmission of the photonic crystal slab waveguides with microspheres can be enhanced to be around twice that without microspheres.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A Chutinan, M. Okano, and S. Noda, �??Wider bandwidth with high transmission through waveguide bends, in two-dimensional photonic crystal slabs,�?? Appl. Phys. Lett. 80, 1698-1700 (2002).
    [CrossRef]
  2. S. J. McNab, N. Moll, Y. A. Vlasov, �??Ultra-low loss photonic integrated circuit withmembrane-type photonic crystal waveguides,�?? Opt. Express 11, 2927-2939 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927</a>
    [CrossRef] [PubMed]
  3. A. Talneau, L. Le Gouezigou and N. Bouadma, M. Kafesaki and C. M. Soukoulis, M. Agio, �??Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 µm,�?? Appl. Phys. Lett. 80, 547-549 (2002).
    [CrossRef]
  4. S. Y. Lin, E. Chow, S. G. Johnson, J. D. Joannopoulos,�?? Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-µm wavelength,�?? Opt. Lett. 25, 1297-1299 (2000).
    [CrossRef]
  5. M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tunnermann, R. Iliew, C. Etrich, U. Peschel, F. Lederer, �?? High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,�?? Appl. Phys. Lett. 84, 663-665 (2004).
    [CrossRef]
  6. B. D�??Urso, O. Painter, J. O�??Brien, T. Tombrello, A. Yariv, A. Scherer, �??Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities,�?? J. Opt. Soc. Am B 15, 1155-1159 (1998).
    [CrossRef]
  7. T. Baba, A.Motegi, T. Iwai, N. Fukaya, Y. Watanabe, A. Sakai, �??Light Propagation Characteristics of Straight Single-Line-Defect Waveguides in Photonic Crystal Slabs Fabricated Into a Silicon-on-Insulator Substrate,�?? IEEE J. Quantum Electron. 38, 743-752 (2002).
    [CrossRef]
  8. N. Kawai and K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, and K. Asakawa, T. Takemori, �??Confined Band Gap in an Air-Bridge Type of Two-Dimensional AlGaAs Photonic Crystal,�?? Phys. Rev. Lett. 86, 2289-2292 (2001).
    [CrossRef] [PubMed]
  9. W. Kuang, C. Kim, A. Stapleton, W. J. Kim, J. D. O�??Brien, �??Calculated out-of-plane transmission loss for photonic-crystal slab waveguides,�?? Opt. Lett. 28, 1781-1783 (2003).
    [CrossRef] [PubMed]
  10. S. I.Bozhevolnyi,V. S.Volkov,J. Arentoft,A. Boltasseva,T. Sondergaard,M. Kristensen,�?? Direct mapping of light propagation in photonic crystal waveguides,�?? Opt. Commun. 212, 51-55 (2002).
    [CrossRef]
  11. S. Yamada, T. Koyama, Y. Katayama, N. Ikeda, Y. Sugimoto, and K. Asakawa, N. Kawai and K. Inoue, �??Observation of light propagation in two-dimensional photonic crystal-based bent optical waveguides,�?? J. Appl. Phys. 89, 855-858 (2001).
    [CrossRef]
  12. T. Baba, N. Fukaya, J. Yonekura, �??Observation of light propagation in photonic crystal waveguides with bends,�?? Electron. Lett. 35, 654-655 (1999).
    [CrossRef]
  13. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, T. P. Pearsall, �??Waveguiding in planar photonic crystals,�?? Appl. Phys. Lett. 77, 1937-1939 (2000).
    [CrossRef]
  14. E. Chow, S.Y. Lin, S.G. Johnson, P.R. Villeneuve, J.D. Joannopoulos, J.R. Wendt, G.A. Vawter, W. Zubrzycki, H. Hou, A. Alleman, �??Three-dimensional control of light in a two-dimensional photonic crystal slab,�?? Nature 407, 983-986 (2000).
    [CrossRef] [PubMed]
  15. D. M. Pustai, S. Shi, C. Chen, A. Sharkawy, D. W. Prather, �??Analysis of splitters for self-collimated beams in planar photonic crystals,�?? Opt. Express 12, 1823-1831 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1823">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1823</a>
    [CrossRef] [PubMed]
  16. F. Bresson, C. C. Chen, G. C. Chi, Y. W. Chen, �??Inclusion of defects in opal-like photonic crystals layers with a stop-band in the visible range,�?? Appl. Surf. Science 17, 281-288 (2003).
    [CrossRef]
  17. V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, H. Misawa, �??Tailoring and characterization of photonic crystals,�?? J. of Photochemistry and Photobiology C 2, 35�??69 (2001)
    [CrossRef]
  18. K. Kawano, T. Kitoh, �??Introduction to optical waveguide analysis,�?? (John Wiley & Sons Inc, New York, 2001), for the effective index method: pp. 20-35; for BPM: pp. 165-232; for FDTD: pp. 233-250.

Appl. Phys. Lett. (4)

A Chutinan, M. Okano, and S. Noda, �??Wider bandwidth with high transmission through waveguide bends, in two-dimensional photonic crystal slabs,�?? Appl. Phys. Lett. 80, 1698-1700 (2002).
[CrossRef]

A. Talneau, L. Le Gouezigou and N. Bouadma, M. Kafesaki and C. M. Soukoulis, M. Agio, �??Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 µm,�?? Appl. Phys. Lett. 80, 547-549 (2002).
[CrossRef]

M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tunnermann, R. Iliew, C. Etrich, U. Peschel, F. Lederer, �?? High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,�?? Appl. Phys. Lett. 84, 663-665 (2004).
[CrossRef]

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, T. P. Pearsall, �??Waveguiding in planar photonic crystals,�?? Appl. Phys. Lett. 77, 1937-1939 (2000).
[CrossRef]

Appl. Surf. Science (1)

F. Bresson, C. C. Chen, G. C. Chi, Y. W. Chen, �??Inclusion of defects in opal-like photonic crystals layers with a stop-band in the visible range,�?? Appl. Surf. Science 17, 281-288 (2003).
[CrossRef]

Electron. Lett. (1)

T. Baba, N. Fukaya, J. Yonekura, �??Observation of light propagation in photonic crystal waveguides with bends,�?? Electron. Lett. 35, 654-655 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Baba, A.Motegi, T. Iwai, N. Fukaya, Y. Watanabe, A. Sakai, �??Light Propagation Characteristics of Straight Single-Line-Defect Waveguides in Photonic Crystal Slabs Fabricated Into a Silicon-on-Insulator Substrate,�?? IEEE J. Quantum Electron. 38, 743-752 (2002).
[CrossRef]

J. Appl. Phys. (1)

S. Yamada, T. Koyama, Y. Katayama, N. Ikeda, Y. Sugimoto, and K. Asakawa, N. Kawai and K. Inoue, �??Observation of light propagation in two-dimensional photonic crystal-based bent optical waveguides,�?? J. Appl. Phys. 89, 855-858 (2001).
[CrossRef]

J. of Photochemistry and Photobiology C (1)

V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, H. Misawa, �??Tailoring and characterization of photonic crystals,�?? J. of Photochemistry and Photobiology C 2, 35�??69 (2001)
[CrossRef]

J. Opt. Soc. Am B (1)

B. D�??Urso, O. Painter, J. O�??Brien, T. Tombrello, A. Yariv, A. Scherer, �??Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities,�?? J. Opt. Soc. Am B 15, 1155-1159 (1998).
[CrossRef]

Nature (1)

E. Chow, S.Y. Lin, S.G. Johnson, P.R. Villeneuve, J.D. Joannopoulos, J.R. Wendt, G.A. Vawter, W. Zubrzycki, H. Hou, A. Alleman, �??Three-dimensional control of light in a two-dimensional photonic crystal slab,�?? Nature 407, 983-986 (2000).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. I.Bozhevolnyi,V. S.Volkov,J. Arentoft,A. Boltasseva,T. Sondergaard,M. Kristensen,�?? Direct mapping of light propagation in photonic crystal waveguides,�?? Opt. Commun. 212, 51-55 (2002).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

N. Kawai and K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, and K. Asakawa, T. Takemori, �??Confined Band Gap in an Air-Bridge Type of Two-Dimensional AlGaAs Photonic Crystal,�?? Phys. Rev. Lett. 86, 2289-2292 (2001).
[CrossRef] [PubMed]

Other (1)

K. Kawano, T. Kitoh, �??Introduction to optical waveguide analysis,�?? (John Wiley & Sons Inc, New York, 2001), for the effective index method: pp. 20-35; for BPM: pp. 165-232; for FDTD: pp. 233-250.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic drawing of PCSWGs (b) Effective index of the slab waveguide for different thickeness of the slab. (c) Fundamental mode of the slab waveguide.

Fig. 2.
Fig. 2.

Cross section of PCSWG with microspheres at X-Y plane. The etched holes act as a template for sedimentation of microspheres.

Fig. 3.
Fig. 3.

Transmission spectra of PCSWG with microspheres of different refractive indexes (a) for the TE mode and (b) for the TM mode.

Fig. 4.
Fig. 4.

Propagation of light in the TM mode. The loss in the SiO2 layer is reduced by deposition of microspheres.

Metrics