T. Geue, O. Henneberg, and U. Pietsch, “X-ray reflectivity from sinusoidal surface relief gratings,” Cryst. Res. Technol. 37, 770–776 (2002).
[Crossref]
L. I. Goray and J. F. Seely, “Efficiencies of master, replica, and multilayer gratings for the soft-x-ray-extreme-ultraviolet range: modeling based on the modified integral method and comparisons with measurements,” Appl. Opt. 41, 1434–1445 (2002).
[Crossref]
[PubMed]
P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[Crossref]
D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[Crossref]
P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[Crossref]
T. Geue, O. Henneberg, and U. Pietsch, “X-ray reflectivity from sinusoidal surface relief gratings,” Cryst. Res. Technol. 37, 770–776 (2002).
[Crossref]
E. D. Palik and G. Ghosh, Electronic Handbook of Optical Constants of Solid (Academic, San Diego, Calif., 1999).
L. I. Goray and J. F. Seely, “Efficiencies of master, replica, and multilayer gratings for the soft-x-ray-extreme-ultraviolet range: modeling based on the modified integral method and comparisons with measurements,” Appl. Opt. 41, 1434–1445 (2002).
[Crossref]
[PubMed]
M. P. Kowalski, J. F. Seely, L. I. Goray, W. R. Hunter, and J. C. Rife, “Comparison of the calculated and the measured efficiencies of a normal-incidence grating in the 125–225-Å wavelength range,” Appl. Opt. 36, 8939–8943 (1997).
[Crossref]
L. I. Goray, “Modified integral method for weak convergence problems of light scattering on relief grating,” in Diffractive and Holographic Technologies for Integrated Photonic Systems, R. I. Sutherland, D. W. Prather, and I. Cindrich, eds., Proc. SPIE4291, 1–12 (2001).
L. I. Goray and S. Yu. Sadov, “Numerical modeling of nonconformal gratings by the modified integral method,” in Diffractive Optics and Micro-Optics, Vol. 75 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 365–379.
T. Geue, O. Henneberg, and U. Pietsch, “X-ray reflectivity from sinusoidal surface relief gratings,” Cryst. Res. Technol. 37, 770–776 (2002).
[Crossref]
D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[Crossref]
D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[Crossref]
D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[Crossref]
P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[Crossref]
E. D. Palik and G. Ghosh, Electronic Handbook of Optical Constants of Solid (Academic, San Diego, Calif., 1999).
T. Geue, O. Henneberg, and U. Pietsch, “X-ray reflectivity from sinusoidal surface relief gratings,” Cryst. Res. Technol. 37, 770–776 (2002).
[Crossref]
P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[Crossref]
L. I. Goray and S. Yu. Sadov, “Numerical modeling of nonconformal gratings by the modified integral method,” in Diffractive Optics and Micro-Optics, Vol. 75 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 365–379.
L. I. Goray and J. F. Seely, “Efficiencies of master, replica, and multilayer gratings for the soft-x-ray-extreme-ultraviolet range: modeling based on the modified integral method and comparisons with measurements,” Appl. Opt. 41, 1434–1445 (2002).
[Crossref]
[PubMed]
M. P. Kowalski, J. F. Seely, L. I. Goray, W. R. Hunter, and J. C. Rife, “Comparison of the calculated and the measured efficiencies of a normal-incidence grating in the 125–225-Å wavelength range,” Appl. Opt. 36, 8939–8943 (1997).
[Crossref]
D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[Crossref]
L. I. Goray and J. F. Seely, “Efficiencies of master, replica, and multilayer gratings for the soft-x-ray-extreme-ultraviolet range: modeling based on the modified integral method and comparisons with measurements,” Appl. Opt. 41, 1434–1445 (2002).
[Crossref]
[PubMed]
M. P. Kowalski, J. F. Seely, L. I. Goray, W. R. Hunter, and J. C. Rife, “Comparison of the calculated and the measured efficiencies of a normal-incidence grating in the 125–225-Å wavelength range,” Appl. Opt. 36, 8939–8943 (1997).
[Crossref]
P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[Crossref]
D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[Crossref]
T. Geue, O. Henneberg, and U. Pietsch, “X-ray reflectivity from sinusoidal surface relief gratings,” Cryst. Res. Technol. 37, 770–776 (2002).
[Crossref]
For commonly used software based on the modified integral method for simulation and analysis of gratings, see http://www.pcgrate.com
L. I. Goray, “Modified integral method for weak convergence problems of light scattering on relief grating,” in Diffractive and Holographic Technologies for Integrated Photonic Systems, R. I. Sutherland, D. W. Prather, and I. Cindrich, eds., Proc. SPIE4291, 1–12 (2001).
L. I. Goray and S. Yu. Sadov, “Numerical modeling of nonconformal gratings by the modified integral method,” in Diffractive Optics and Micro-Optics, Vol. 75 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 365–379.
E. D. Palik and G. Ghosh, Electronic Handbook of Optical Constants of Solid (Academic, San Diego, Calif., 1999).