Abstract

Near-field imaging of an engineered double layer structure in transmission mode has shown enhancement of light intensity through the structure. An array created by an optically thick double layer structure of a total thickness of 165 nm containing twin 50 nm Au layers was imaged using a near-field scanning optical microscope in illumination mode. The resulting transmission image shows an increased local transmission at the position of each particle in the array. This viewable enhancement is due to a nanoantenna effect that is created by a resonant plasmon oscillation between the two layers.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  2. L. Marin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
    [CrossRef]
  3. T. Thio, H.J. Lezec, and T.W. Ebbesen, “Strongly enhanced optical transmission through subwavelength holes in metal films,” Physica B 279, 90–93 (2000).
    [CrossRef]
  4. T. Thio, H.J. Lezec, T.W. Ebbesen, K.M. Pellerin, G.D. Lewen, A. Nahata, and R.A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
    [CrossRef]
  5. J.R. Krenn, G. Shider, W. Rechberger, B. Lamprecht, A. Leiner, F.R. Aussenegg, and J.C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379–3381 (2000).
    [CrossRef]
  6. R. Hillenbrand and F. Keilmann, “Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy,” Appl. Phys. B 73, 239–243 (2001).
    [CrossRef]
  7. D.A. Genov, A.K. Sarychev, V.M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparicle arrays,” Nano Lett. 4, 153–158 (2004).
    [CrossRef]
  8. K. Li, M.I. Stockman, and D.J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
    [CrossRef] [PubMed]
  9. J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
    [CrossRef]
  10. J. Prikulis, H. Xu, L. 0, M. Käll, and H. Olin, “Phase-sensitive near-field imaging of metal nanoparticles,” J. Appl. Phys. 92, 6211–6214 (2002).
    [CrossRef]
  11. A.A. Mikhailovsky, M.A. Petruska, M.I. Stockman, and V.I Klimov, “Broadband nearfield interference spectroscopy of metal nanoparticles using a femtosecond whitelight continuum,” Opt. Lett. 28, 1686–1688 (2003).
    [CrossRef] [PubMed]
  12. A.A. Mikhailovsky, M.A. Petruska, K. Li, M.I. Stockman, and V.I Klimov, “Phase-sensitive spectroscopy of surface plasmons in individual metal nanostructures,” Phys. Rev. B 69, 085401 (2004).
    [CrossRef]

2004 (2)

D.A. Genov, A.K. Sarychev, V.M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparicle arrays,” Nano Lett. 4, 153–158 (2004).
[CrossRef]

A.A. Mikhailovsky, M.A. Petruska, K. Li, M.I. Stockman, and V.I Klimov, “Phase-sensitive spectroscopy of surface plasmons in individual metal nanostructures,” Phys. Rev. B 69, 085401 (2004).
[CrossRef]

2003 (2)

2002 (2)

T. Thio, H.J. Lezec, T.W. Ebbesen, K.M. Pellerin, G.D. Lewen, A. Nahata, and R.A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

J. Prikulis, H. Xu, L. 0, M. Käll, and H. Olin, “Phase-sensitive near-field imaging of metal nanoparticles,” J. Appl. Phys. 92, 6211–6214 (2002).
[CrossRef]

2001 (2)

L. Marin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

R. Hillenbrand and F. Keilmann, “Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy,” Appl. Phys. B 73, 239–243 (2001).
[CrossRef]

2000 (2)

T. Thio, H.J. Lezec, and T.W. Ebbesen, “Strongly enhanced optical transmission through subwavelength holes in metal films,” Physica B 279, 90–93 (2000).
[CrossRef]

J.R. Krenn, G. Shider, W. Rechberger, B. Lamprecht, A. Leiner, F.R. Aussenegg, and J.C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379–3381 (2000).
[CrossRef]

1999 (1)

J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

1998 (1)

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

0, L.

J. Prikulis, H. Xu, L. 0, M. Käll, and H. Olin, “Phase-sensitive near-field imaging of metal nanoparticles,” J. Appl. Phys. 92, 6211–6214 (2002).
[CrossRef]

Aussenegg, F.R.

J.R. Krenn, G. Shider, W. Rechberger, B. Lamprecht, A. Leiner, F.R. Aussenegg, and J.C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379–3381 (2000).
[CrossRef]

J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Bergman, D.J.

K. Li, M.I. Stockman, and D.J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Bourillot, E.

J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Dereux, A.

J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Ebbesen, T.W.

T. Thio, H.J. Lezec, T.W. Ebbesen, K.M. Pellerin, G.D. Lewen, A. Nahata, and R.A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

L. Marin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

T. Thio, H.J. Lezec, and T.W. Ebbesen, “Strongly enhanced optical transmission through subwavelength holes in metal films,” Physica B 279, 90–93 (2000).
[CrossRef]

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Garcia-Vidal, F.J.

L. Marin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

Genov, D.A.

D.A. Genov, A.K. Sarychev, V.M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparicle arrays,” Nano Lett. 4, 153–158 (2004).
[CrossRef]

Ghaemi, H.F.

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Girard, C.

J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Gotschy, W.

J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Goudonnet, J.P.

J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Hillenbrand, R.

R. Hillenbrand and F. Keilmann, “Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy,” Appl. Phys. B 73, 239–243 (2001).
[CrossRef]

Käll, M.

J. Prikulis, H. Xu, L. 0, M. Käll, and H. Olin, “Phase-sensitive near-field imaging of metal nanoparticles,” J. Appl. Phys. 92, 6211–6214 (2002).
[CrossRef]

Keilmann, F.

R. Hillenbrand and F. Keilmann, “Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy,” Appl. Phys. B 73, 239–243 (2001).
[CrossRef]

Klimov, V.I

A.A. Mikhailovsky, M.A. Petruska, K. Li, M.I. Stockman, and V.I Klimov, “Phase-sensitive spectroscopy of surface plasmons in individual metal nanostructures,” Phys. Rev. B 69, 085401 (2004).
[CrossRef]

A.A. Mikhailovsky, M.A. Petruska, M.I. Stockman, and V.I Klimov, “Broadband nearfield interference spectroscopy of metal nanoparticles using a femtosecond whitelight continuum,” Opt. Lett. 28, 1686–1688 (2003).
[CrossRef] [PubMed]

Krenn, J.R.

J.R. Krenn, G. Shider, W. Rechberger, B. Lamprecht, A. Leiner, F.R. Aussenegg, and J.C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379–3381 (2000).
[CrossRef]

J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Lacroute, Y.

J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Lamprecht, B.

J.R. Krenn, G. Shider, W. Rechberger, B. Lamprecht, A. Leiner, F.R. Aussenegg, and J.C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379–3381 (2000).
[CrossRef]

Leiner, A.

J.R. Krenn, G. Shider, W. Rechberger, B. Lamprecht, A. Leiner, F.R. Aussenegg, and J.C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379–3381 (2000).
[CrossRef]

Leitner, A.

J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Lewen, G.D.

T. Thio, H.J. Lezec, T.W. Ebbesen, K.M. Pellerin, G.D. Lewen, A. Nahata, and R.A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

Lezec, H.J.

T. Thio, H.J. Lezec, T.W. Ebbesen, K.M. Pellerin, G.D. Lewen, A. Nahata, and R.A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

L. Marin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

T. Thio, H.J. Lezec, and T.W. Ebbesen, “Strongly enhanced optical transmission through subwavelength holes in metal films,” Physica B 279, 90–93 (2000).
[CrossRef]

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Li, K.

A.A. Mikhailovsky, M.A. Petruska, K. Li, M.I. Stockman, and V.I Klimov, “Phase-sensitive spectroscopy of surface plasmons in individual metal nanostructures,” Phys. Rev. B 69, 085401 (2004).
[CrossRef]

K. Li, M.I. Stockman, and D.J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Linke, R.A.

T. Thio, H.J. Lezec, T.W. Ebbesen, K.M. Pellerin, G.D. Lewen, A. Nahata, and R.A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

Marin-Moreno, L.

L. Marin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

Mikhailovsky, A.A.

A.A. Mikhailovsky, M.A. Petruska, K. Li, M.I. Stockman, and V.I Klimov, “Phase-sensitive spectroscopy of surface plasmons in individual metal nanostructures,” Phys. Rev. B 69, 085401 (2004).
[CrossRef]

A.A. Mikhailovsky, M.A. Petruska, M.I. Stockman, and V.I Klimov, “Broadband nearfield interference spectroscopy of metal nanoparticles using a femtosecond whitelight continuum,” Opt. Lett. 28, 1686–1688 (2003).
[CrossRef] [PubMed]

Nahata, A.

T. Thio, H.J. Lezec, T.W. Ebbesen, K.M. Pellerin, G.D. Lewen, A. Nahata, and R.A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

Olin, H.

J. Prikulis, H. Xu, L. 0, M. Käll, and H. Olin, “Phase-sensitive near-field imaging of metal nanoparticles,” J. Appl. Phys. 92, 6211–6214 (2002).
[CrossRef]

Pellerin, K.M.

T. Thio, H.J. Lezec, T.W. Ebbesen, K.M. Pellerin, G.D. Lewen, A. Nahata, and R.A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

L. Marin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

Pendry, J.B.

L. Marin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

Petruska, M.A.

A.A. Mikhailovsky, M.A. Petruska, K. Li, M.I. Stockman, and V.I Klimov, “Phase-sensitive spectroscopy of surface plasmons in individual metal nanostructures,” Phys. Rev. B 69, 085401 (2004).
[CrossRef]

A.A. Mikhailovsky, M.A. Petruska, M.I. Stockman, and V.I Klimov, “Broadband nearfield interference spectroscopy of metal nanoparticles using a femtosecond whitelight continuum,” Opt. Lett. 28, 1686–1688 (2003).
[CrossRef] [PubMed]

Prikulis, J.

J. Prikulis, H. Xu, L. 0, M. Käll, and H. Olin, “Phase-sensitive near-field imaging of metal nanoparticles,” J. Appl. Phys. 92, 6211–6214 (2002).
[CrossRef]

Rechberger, W.

J.R. Krenn, G. Shider, W. Rechberger, B. Lamprecht, A. Leiner, F.R. Aussenegg, and J.C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379–3381 (2000).
[CrossRef]

Sarychev, A.K.

D.A. Genov, A.K. Sarychev, V.M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparicle arrays,” Nano Lett. 4, 153–158 (2004).
[CrossRef]

Schider, G.

J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Shalaev, V.M.

D.A. Genov, A.K. Sarychev, V.M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparicle arrays,” Nano Lett. 4, 153–158 (2004).
[CrossRef]

Shider, G.

J.R. Krenn, G. Shider, W. Rechberger, B. Lamprecht, A. Leiner, F.R. Aussenegg, and J.C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379–3381 (2000).
[CrossRef]

Stockman, M.I.

A.A. Mikhailovsky, M.A. Petruska, K. Li, M.I. Stockman, and V.I Klimov, “Phase-sensitive spectroscopy of surface plasmons in individual metal nanostructures,” Phys. Rev. B 69, 085401 (2004).
[CrossRef]

A.A. Mikhailovsky, M.A. Petruska, M.I. Stockman, and V.I Klimov, “Broadband nearfield interference spectroscopy of metal nanoparticles using a femtosecond whitelight continuum,” Opt. Lett. 28, 1686–1688 (2003).
[CrossRef] [PubMed]

K. Li, M.I. Stockman, and D.J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Thio, T.

T. Thio, H.J. Lezec, T.W. Ebbesen, K.M. Pellerin, G.D. Lewen, A. Nahata, and R.A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

L. Marin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

T. Thio, H.J. Lezec, and T.W. Ebbesen, “Strongly enhanced optical transmission through subwavelength holes in metal films,” Physica B 279, 90–93 (2000).
[CrossRef]

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Weeber, J.C.

J.R. Krenn, G. Shider, W. Rechberger, B. Lamprecht, A. Leiner, F.R. Aussenegg, and J.C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379–3381 (2000).
[CrossRef]

J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Wei, A.

D.A. Genov, A.K. Sarychev, V.M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparicle arrays,” Nano Lett. 4, 153–158 (2004).
[CrossRef]

Wolff, P.A.

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Xu, H.

J. Prikulis, H. Xu, L. 0, M. Käll, and H. Olin, “Phase-sensitive near-field imaging of metal nanoparticles,” J. Appl. Phys. 92, 6211–6214 (2002).
[CrossRef]

Appl. Phys. B (1)

R. Hillenbrand and F. Keilmann, “Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy,” Appl. Phys. B 73, 239–243 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

J.R. Krenn, G. Shider, W. Rechberger, B. Lamprecht, A. Leiner, F.R. Aussenegg, and J.C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77, 3379–3381 (2000).
[CrossRef]

J. Appl. Phys. (1)

J. Prikulis, H. Xu, L. 0, M. Käll, and H. Olin, “Phase-sensitive near-field imaging of metal nanoparticles,” J. Appl. Phys. 92, 6211–6214 (2002).
[CrossRef]

Nano Lett. (1)

D.A. Genov, A.K. Sarychev, V.M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparicle arrays,” Nano Lett. 4, 153–158 (2004).
[CrossRef]

Nanotechnology (1)

T. Thio, H.J. Lezec, T.W. Ebbesen, K.M. Pellerin, G.D. Lewen, A. Nahata, and R.A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

Nature (1)

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

A.A. Mikhailovsky, M.A. Petruska, K. Li, M.I. Stockman, and V.I Klimov, “Phase-sensitive spectroscopy of surface plasmons in individual metal nanostructures,” Phys. Rev. B 69, 085401 (2004).
[CrossRef]

Phys. Rev. Lett. (3)

L. Marin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

K. Li, M.I. Stockman, and D.J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Physica B (1)

T. Thio, H.J. Lezec, and T.W. Ebbesen, “Strongly enhanced optical transmission through subwavelength holes in metal films,” Physica B 279, 90–93 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Construction of double layer gold sample. (a)SEM topography of array; (b)SEM topography of a single dot; (c)Z-layer cross section

Fig. 2.
Fig. 2.

Illustration of experimental techniques. The double layer sample is illuminated, with 532 nm light, through a 150 nm diameter aperture pulled from fiber optics. Incident light on the sample scatters everywhere. Light is collected using classical optics below the sample. An APD is used to count photons.

Fig. 3.
Fig. 3.

Scanning results. The line drawn through (a) and (b) represents the cross section presented; (a)AFM channel, in nm; (b)NSOM channel, in arbitrary units; (c)A representative cross section of the AFM and NSOM channels is presented.

Fig. 4.
Fig. 4.

Construction of single layer gold sample. (a)SEM topography of dots; (b)Z-layer cross section

Fig. 5.
Fig. 5.

Scanning results - single layer gold dots. The line drawn through (a) and (b) represents the cross section presented; (a)AFM channel, in nm; (b)NSOM channel, in arbitrary units; (c)A representative cross section of the AFM and NSOM channels is presented.

Metrics