Abstract

We fabricated nanometer- and micrometer-order diameter optical fibers (NMOFs) by drawing them in a microfurnace comprising a sapphire tube heated with a CO2 laser. Using very short - a few mm long - fiber biconical tapers having a submicron waist, which can be bent locally in a free space by translation of the taper ends, we studied the effect of bending and looping on the transmission characteristics of a free NMOF. In particular, we have demonstrated an optical interferometer built of a coiled self-coupling NMOF.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, �??Phase-matched excitation of whispering-gallerymode resonances by a fiber taper,�?? Opt. Lett. 22, 1129-1131 (1997).
    [CrossRef] [PubMed]
  2. J. Bures and R. Ghosh, �??Power density of the evanescent field in the vicinity of a tapered fiber,�?? J. Opt. Soc. Am. A 16, 1992-1996 (1999).
    [CrossRef]
  3. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, �??Supercontinuum generation in tapered fibres,�?? Opt. Lett. 25, 1415-1417 (2000).
    [CrossRef]
  4. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, �??Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,�?? Phys. Rev. Lett. 91, 04902 (2003).
    [CrossRef]
  5. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, �??Subwavelength-diameter silica wires for low-loss optical wave guiding,�?? Nature 426, 816-819 (2003).
    [CrossRef] [PubMed]
  6. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth and P. St.J. Russell, �??Supercontinuum generation in submicron fibre waveguides,�?? Opt. Express 12, 2864-2869 (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864">http://www.opticsexpress.org /abstract.cfm?URI=OPEX-12-13-2864</a>.
    [CrossRef] [PubMed]
  7. G. Brambilla, V. Finazzi, and D. J. Richardson, �??Ultra-low-loss optical fiber nanotapers,�?? Opt. Express 12, 2258-2263 (2004).
    [CrossRef] [PubMed]
  8. F. Ladouceur, �??Roughness, inhomogeneity, and integrated optics,�?? J. Lightwave Technol. 15, 1020-1025 (1997).
    [CrossRef]
  9. W. Tan, Z. Y. Shi, S. Smith, D. Birnbaum, and R. Kopelman, �??Submicrometer intracellular chemical optical fiber sensors,�?? Science 258, 778-781 (1992).
    [CrossRef] [PubMed]
  10. M. Sumetsky, �??Optical fiber microcoil resonator,�?? Opt. Express 12, 2303-2316 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2303">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2303</a>.
    [CrossRef] [PubMed]
  11. T. E. Dimmick, G. Kakarantzas, T. A. Birks, and P. St.J. Russell, �??Carbon dioxide laser fabrication of fused-fiber couplers and tapers,�?? Appl. Opt. 38, 6845�??6848 (1999).
    [CrossRef]
  12. A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, �??Heat transfer modeling in CO2 laser processing of optical fibres,�?? Opt. Commun. 152, 324�??328 (1998).
    [CrossRef]
  13. R. C. Oehrle, �??Galvanometer beam-scanning system for laser fiber drawing,�?? Appl. Opt. 18, 496-500 (1979).
    [CrossRef] [PubMed]
  14. S. T. Oh, W. T. Han, U. C. Paek, and Y. Chung, �??Azimuthally symmetric long-period fiber gratings fabricated with CO2 laser,�?? Microwave Opt. Technol. Lett. 41, 188-190 (2004).
    [CrossRef]
  15. A. W. Snyder and J. D. Love, Optical waveguide theory, (Chapman & Hall, London, 1983).
  16. L.F.Stokes, M.Chodorow, and H.J.Shaw, �??All-single-mode fiber resonator,�?? Opt. Lett. 7, 288-290 (1982).
    [CrossRef] [PubMed]
  17. L.Tong, J. Lou, and E.Mazur, �??Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,�?? Opt. Express 12, 1025-1035 (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025">http://www.opticsexpress.org/ abstract.cfm?URI=OPEX-12-6-1025</a>.
    [CrossRef] [PubMed]

Appl. Opt. (2)

J. Lightwave Technol. (1)

F. Ladouceur, �??Roughness, inhomogeneity, and integrated optics,�?? J. Lightwave Technol. 15, 1020-1025 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

Microwave Opt. Technol. Lett. (1)

S. T. Oh, W. T. Han, U. C. Paek, and Y. Chung, �??Azimuthally symmetric long-period fiber gratings fabricated with CO2 laser,�?? Microwave Opt. Technol. Lett. 41, 188-190 (2004).
[CrossRef]

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, �??Subwavelength-diameter silica wires for low-loss optical wave guiding,�?? Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, �??Heat transfer modeling in CO2 laser processing of optical fibres,�?? Opt. Commun. 152, 324�??328 (1998).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, �??Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,�?? Phys. Rev. Lett. 91, 04902 (2003).
[CrossRef]

Science (1)

W. Tan, Z. Y. Shi, S. Smith, D. Birnbaum, and R. Kopelman, �??Submicrometer intracellular chemical optical fiber sensors,�?? Science 258, 778-781 (1992).
[CrossRef] [PubMed]

Other (1)

A. W. Snyder and J. D. Love, Optical waveguide theory, (Chapman & Hall, London, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Illustration of the setup for drawing NMOF using a sapphire tube heated with a CO2 laser

Fig. 2.
Fig. 2.

SEM image of a NMOF drawn in sapphire microfurnace by translation of stage 1

Fig. 3.
Fig. 3.

Illustration of the setup for NMOF bending. The ends of biconical fiber taper are glued to the stages. The waist of taper can be bent by translation of one of the stages in three dimensions.

Fig. 4.
Fig. 4.

— variation of diameter of fiber tapers 1 and 2 used in our experiments as a function of length; insert shows variation of diameter for the NMOF parts of these tapers. b — transmission spectrum for the same fibers. Solid curves — fiber 1; dashed curves — fiber 2.

Fig. 5.
Fig. 5.

Transmission spectrum and digitally sharpened optical microscope images for different configurations of NMOF contained in taper 1. a — bent NMOF; b and c — coiled NMOF; d — NMOF with straight central part.

Fig. 6.
Fig. 6.

Comparison of the experimental transmission spectrum a, shown in Fig. 5 with theoretical fits obtained using Eqs. (1)(3) for transmission loss. The bend radius, length of bent NMOF segment, and NMOF diameter for curves 1–5 are specified in the insert.

Fig. 7.
Fig. 7.

Illustration of two interfering waves (dashed) contributing to the transmission spectrum of the self-coupling microloop. 1 — a wave propagating through the loop; 2 — a wave propagating through the self-coupling region.

Fig. 8.
Fig. 8.

Transmission spectrum and sharpen optical microscope images for different configurations of NMOF contained in taper 2. a, b — bent and coiled NMOF without self coupling; c,d,e — self-coupling microcoils with successively decreasing bend radius. Fig. 8e shows comparison of the experimental data with theoretical dependence defined in the text.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P ( λ 0 ) = exp ( γ ( λ 0 ) L )
γ ( λ 0 ) = U ( λ 0 ) 2 2 V ( λ 0 ) 2 W ( λ 0 ) 3 2 K 1 2 ( W ( λ 0 ) ) ( π rR ) 1 2 exp [ 4 W ( λ 0 ) 3 3 V ( λ 0 ) 2 ( 1 1 n 2 ) R r ] .
V ( λ 0 ) = 2 π r λ 0 ( n 2 1 ) 1 2 , U ( λ 0 ) = r ( 4 π 2 n 2 λ 0 2 β ( λ 0 ) 2 ) 1 2 , W ( λ 0 ) = r ( β ( λ 0 ) 2 4 π 2 λ 0 2 ) 1 2
[ J 1 ( U ) U J 1 ( U ) + K 1 ( W ) W K 1 ( W ) ] [ J 1 ( U ) U J 1 ( U ) + 1 n 2 K 1 ( W ) W K 1 ( W ) ] = ( β λ 0 2 π n ) 2 ( V UW ) 4
P ( λ 0 ) = a 1 ( λ 0 ) exp ( i β ( λ 0 ) S ) + a 2 ( λ 0 ) 2

Metrics