Abstract

Free-running gain-switched Fabry-Perot laser diode is an appropriate incoherent broadband optical source for incoherent 2-dimensional optical code division multiple access. However, the mode partition noise (MPN) in the laser seriously degrades performance. We derived a bit error rate (BER) expression in the presence of MPN using the power spectra of the laser. The theory agreed with the experimental results. There was a power penalty and BER floor due to the MPN in the laser. Therefore, this scheme should be operated with a sufficiently large number of modes. At least 9 modes should be used for error-free transmission at 1 Gbit/s for the laser we investigated in this work.

© 2004 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. P. R. Prucnal, M. A. Santoro, and T. R. Fan, �??Spread spectrum fiber-optic local area network using optical processing,�?? J. Lightwave Technol. 4, 547-554 (1986).
  2. J. A. Salehi, �??Code division multiple-access techniques in optical fiber networks, Part I: fundamental principles,�?? IEEE. Trans. Commun. 37, 824-842 (1989).
    [CrossRef]
  3. D. D. Sampson, G. J. Pendock, and R. A. Griffin, �??Photonic code-division multiple-access communications,�?? Fiber and Integrated Optics 16, 129-157 (1997).
  4. J. A. Salehi, A. M. Weiner, and J. P. Heritage, �??Coherent ultrashort light pulse code-division multiple-access communication systems,�?? J. Lightwave Technol. 8, 478-491 (1990).
    [CrossRef]
  5. K. Kitayama, �??Code division multiplexing lightwave networks based upon optical code conversion,�?? IEEE J. Selec. Areas Commun. 16, 1309-1319 (1998).
  6. X. Wang and K. Kitayama, �??Analysis of beat noise in coherent and incoherent time-spreading OCDMA,�?? J. Lightwave Technol. (to be published).
  7. L. Tanc�?vski and I. Andonovic, �??Hybrid wavelength hopping/time spreading schemes for use in massive optical networks with increased security,�?? IEEE J. Lightwave Tech. 14, 2636-2646 (1996).
  8. X. Wang and K. T. Chan, �??A sequentially self-seeding Fabry-Perot laser for two-dimensional encoding/decoding optical pulse,�?? IEEE J. Quantum Electron. 39, 83-90 (2003).
    [CrossRef]
  9. X. Wang, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, �??Novel temporal/spectral coding technique based on fiber Bragg gratings for fiber optic CDMA application,�?? in Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication. OFC/IOOC '99. Technical Digest, (Optical Society of America, San Diego, 1999), pp. 341-343.
  10. H. Ben Jaafar, S. LaRochelle, P. -Y. Cortes, and H. Fathallah, �??1.25Gbit/s transmission of optical FFHOCDMA signals over 80km with 16 users,�?? Optical Fiber Communication Conference and Exhibit, 2001. OFC 2001 Technical Digest, (Optical Society of America, Anaheim, 2001), pp.TuV3-1 - TuV3-3.
  11. N. Wada, H. Sotobayashi, and K. Kitayama, �??2.5 Gbit/s time-spread/wavelength-hop optical code division multiplexing using fibre Bragg grating with supercontinuum light source,�?? Electron. Lett. 36, 815�??817 (2000).
    [CrossRef]
  12. X. Wang, K. L. Lee, C. Shu, and K. T. Chan, �??Multiwavelength self-seeded Fabry-Perot laser with subharmonic pulse-gating for two-dimensional fiber optic-CDMA,�?? IEEE Photon. Technol. Lett. 13, 1361-1363 (2000).
    [CrossRef]
  13. H. Ito, H. Yokoyama, S. Murata, and H. Inaba, �??Generation of picosecond optical pulses with highly RF modulated AlGaAs DH laser,�?? IEEE J. Quantum Electron. 17, 663-670 (1981).
    [CrossRef]
  14. P. Vasil�??ev, �??Ultrafast diode lasers-Fundamentals and application,�?? Boston: Artech House, 1995.
  15. X. Wang and K. T. Chan, �??Enhancement of transmission data rates in incoherent FO-CDMA systems,�?? in OptoElectronics Communication Conference OECC�??00 Tech. Dig., (Chiba, Japan, 2000), Paper 14A2-5, pp. 458�??459.
  16. S. Kutsuzawa, N. Minato, S. Oshiba, A. Nishiki, and K. Kitayama, �??10 Gb/s�?2 ch signal unrepeated transmission over 100 km of data rate enhanced time-spread/wavelength-hopping OCDM using 2.5-Gb/s-FBG en/decoder,�?? IEEE Photon. Technol. Lett., 15, 317-319 (2003).
    [CrossRef]
  17. X. Wang and K. T. Chan, �??The effect of grating position deviation and fiber dispersion in the fiber optic�??CDMA network with the FBG en/decoder for T/S coding,�?? Microwave and Optic Technol. Lett. 35, 16-19 (2002).
  18. Takeshi Ito, S. Machida, K. Nawata, and Tetsuhiko Ikegami, �??Intensity fluctuations in each longitudinal mode of a multimode AlGaAs laser,�?? IEEE J. Quantum Electron. 13, 574-579 (1977).
    [CrossRef]
  19. K. Ogawa and R. S. Vodhanel, �??Measurements of mode partition noise of laser diodes,�?? IEEE J. Quantum Electron. 18, 1090-1093 (1982).
    [CrossRef]
  20. K. Ogawa, �??Analysis of mode partition noise in laser transmission systems,�?? IEEE J. Quantum Electron. 18, 849-855 (1982).
    [CrossRef]
  21. N. H. Jensen, H. Oleson, and K. E. Stubkjaer, �??Partition noise in semiconductor lasers under CW and pulsed operation,�?? IEEE J. Quantum Electron. 23, 71-79 (1987).
    [CrossRef]
  22. G. J. Meslener, �??Mode-partition noise in microwave subcarrier transmission systems,�?? J. Lightwave Technol. 12, 118-126 (1994).
    [CrossRef]
  23. R. H. Wentworth, G. E. Bodeep, and T. E. Darcie, �??Laser mode partition noise in lightwave systems using dispersive optical fiber,�?? IEEE. J. Lightwave Technol. 10, 84 �??89 (1992).
    [CrossRef]
  24. B. R. Clark, �??Mode partition noise induced by optical filtering,�?? Electron. Lett. 25, 211-212 (1989).
    [CrossRef]
  25. R. S. Fyath and J. J. O�??Reilly, �??Performance of lightwave systems incorporating multilongitudinal mode laser and optically preamplified receiver combinations,�?? Optoelectronics IEE Proc. 137, 230-240 (1990).
  26. R. A. Griffin, D. A. Jackson, and D. D. Sampson, �??Coherence and noise properties of gain-switched Fabry-Perot semiconductor lasers,�?? IEEE J. Select. Topics in Quantum Electron. 1, 569 �??576 (1995).
  27. A. J. Mendez, J. L. Lambert, J. -M. Morookian, and R. M. Gagliardi, �??Synthesis and demonstration of high speed, bandwidth efficient optical code division multiple access (CDMA) tested at 1 Gb/s throughput,�?? IEEE Photon. Technol. Lett. 6, 1146-1149 (1994).
    [CrossRef]

Electron. Lett. (2)

N. Wada, H. Sotobayashi, and K. Kitayama, �??2.5 Gbit/s time-spread/wavelength-hop optical code division multiplexing using fibre Bragg grating with supercontinuum light source,�?? Electron. Lett. 36, 815�??817 (2000).
[CrossRef]

B. R. Clark, �??Mode partition noise induced by optical filtering,�?? Electron. Lett. 25, 211-212 (1989).
[CrossRef]

Fiber and Integrated Optics (1)

D. D. Sampson, G. J. Pendock, and R. A. Griffin, �??Photonic code-division multiple-access communications,�?? Fiber and Integrated Optics 16, 129-157 (1997).

IEEE J. Lightwave Tech. (1)

L. Tanc�?vski and I. Andonovic, �??Hybrid wavelength hopping/time spreading schemes for use in massive optical networks with increased security,�?? IEEE J. Lightwave Tech. 14, 2636-2646 (1996).

IEEE J. Quantum Electron. (6)

X. Wang and K. T. Chan, �??A sequentially self-seeding Fabry-Perot laser for two-dimensional encoding/decoding optical pulse,�?? IEEE J. Quantum Electron. 39, 83-90 (2003).
[CrossRef]

H. Ito, H. Yokoyama, S. Murata, and H. Inaba, �??Generation of picosecond optical pulses with highly RF modulated AlGaAs DH laser,�?? IEEE J. Quantum Electron. 17, 663-670 (1981).
[CrossRef]

Takeshi Ito, S. Machida, K. Nawata, and Tetsuhiko Ikegami, �??Intensity fluctuations in each longitudinal mode of a multimode AlGaAs laser,�?? IEEE J. Quantum Electron. 13, 574-579 (1977).
[CrossRef]

K. Ogawa and R. S. Vodhanel, �??Measurements of mode partition noise of laser diodes,�?? IEEE J. Quantum Electron. 18, 1090-1093 (1982).
[CrossRef]

K. Ogawa, �??Analysis of mode partition noise in laser transmission systems,�?? IEEE J. Quantum Electron. 18, 849-855 (1982).
[CrossRef]

N. H. Jensen, H. Oleson, and K. E. Stubkjaer, �??Partition noise in semiconductor lasers under CW and pulsed operation,�?? IEEE J. Quantum Electron. 23, 71-79 (1987).
[CrossRef]

IEEE J. Selec. Areas Commun. (1)

K. Kitayama, �??Code division multiplexing lightwave networks based upon optical code conversion,�?? IEEE J. Selec. Areas Commun. 16, 1309-1319 (1998).

IEEE J. Select. Topics in Quantum Electr (1)

R. A. Griffin, D. A. Jackson, and D. D. Sampson, �??Coherence and noise properties of gain-switched Fabry-Perot semiconductor lasers,�?? IEEE J. Select. Topics in Quantum Electron. 1, 569 �??576 (1995).

IEEE Photon. Technol. Lett. (3)

A. J. Mendez, J. L. Lambert, J. -M. Morookian, and R. M. Gagliardi, �??Synthesis and demonstration of high speed, bandwidth efficient optical code division multiple access (CDMA) tested at 1 Gb/s throughput,�?? IEEE Photon. Technol. Lett. 6, 1146-1149 (1994).
[CrossRef]

X. Wang, K. L. Lee, C. Shu, and K. T. Chan, �??Multiwavelength self-seeded Fabry-Perot laser with subharmonic pulse-gating for two-dimensional fiber optic-CDMA,�?? IEEE Photon. Technol. Lett. 13, 1361-1363 (2000).
[CrossRef]

S. Kutsuzawa, N. Minato, S. Oshiba, A. Nishiki, and K. Kitayama, �??10 Gb/s�?2 ch signal unrepeated transmission over 100 km of data rate enhanced time-spread/wavelength-hopping OCDM using 2.5-Gb/s-FBG en/decoder,�?? IEEE Photon. Technol. Lett., 15, 317-319 (2003).
[CrossRef]

IEEE. J. Lightwave Technol. (1)

R. H. Wentworth, G. E. Bodeep, and T. E. Darcie, �??Laser mode partition noise in lightwave systems using dispersive optical fiber,�?? IEEE. J. Lightwave Technol. 10, 84 �??89 (1992).
[CrossRef]

IEEE. Trans. Commun. (1)

J. A. Salehi, �??Code division multiple-access techniques in optical fiber networks, Part I: fundamental principles,�?? IEEE. Trans. Commun. 37, 824-842 (1989).
[CrossRef]

J. Lightwave Technol. (3)

P. R. Prucnal, M. A. Santoro, and T. R. Fan, �??Spread spectrum fiber-optic local area network using optical processing,�?? J. Lightwave Technol. 4, 547-554 (1986).

J. A. Salehi, A. M. Weiner, and J. P. Heritage, �??Coherent ultrashort light pulse code-division multiple-access communication systems,�?? J. Lightwave Technol. 8, 478-491 (1990).
[CrossRef]

G. J. Meslener, �??Mode-partition noise in microwave subcarrier transmission systems,�?? J. Lightwave Technol. 12, 118-126 (1994).
[CrossRef]

Microwave and Optic Technol. Lett. (1)

X. Wang and K. T. Chan, �??The effect of grating position deviation and fiber dispersion in the fiber optic�??CDMA network with the FBG en/decoder for T/S coding,�?? Microwave and Optic Technol. Lett. 35, 16-19 (2002).

OECC 2000 (1)

X. Wang and K. T. Chan, �??Enhancement of transmission data rates in incoherent FO-CDMA systems,�?? in OptoElectronics Communication Conference OECC�??00 Tech. Dig., (Chiba, Japan, 2000), Paper 14A2-5, pp. 458�??459.

OFC 2001 (1)

H. Ben Jaafar, S. LaRochelle, P. -Y. Cortes, and H. Fathallah, �??1.25Gbit/s transmission of optical FFHOCDMA signals over 80km with 16 users,�?? Optical Fiber Communication Conference and Exhibit, 2001. OFC 2001 Technical Digest, (Optical Society of America, Anaheim, 2001), pp.TuV3-1 - TuV3-3.

OFC/IOOC 1999 (1)

X. Wang, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, �??Novel temporal/spectral coding technique based on fiber Bragg gratings for fiber optic CDMA application,�?? in Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication. OFC/IOOC '99. Technical Digest, (Optical Society of America, San Diego, 1999), pp. 341-343.

Optoelectronics IEE Proc. (1)

R. S. Fyath and J. J. O�??Reilly, �??Performance of lightwave systems incorporating multilongitudinal mode laser and optically preamplified receiver combinations,�?? Optoelectronics IEE Proc. 137, 230-240 (1990).

Other (2)

X. Wang and K. Kitayama, �??Analysis of beat noise in coherent and incoherent time-spreading OCDMA,�?? J. Lightwave Technol. (to be published).

P. Vasil�??ev, �??Ultrafast diode lasers-Fundamentals and application,�?? Boston: Artech House, 1995.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics