Abstract

Synchronized dual-wavelength 1-MHz repetition-rate optical pulses were successfully generated by the combination of a gain-switched diode laser and a wavelength-tunable continuous-wave diode laser at 1.5 µm. The timing synchronization of dual-wavelength optical pulses was achieved with four-wave mixing by use of a highly nonlinear optical fiber. This optical pulse source was utilized for terahertz (THz)-wave difference-frequency generation by use of slanted periodically poled LiNbO3 (PPLN). We generated between 1.05 and 2.1 THz by use of the proper grating period of slanted PPLN with a 10-GHz bandwidth.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. R. Smith, D. H. Auston, and M. C. Nuss, ???Subpicosecond photoconducting dipole antennas,??? IEEE J. Quantum Electron. 24, 255???260 (1988).
    [CrossRef]
  2. J. Nishizawa, ???History and characteristics of semiconductor lasers,??? Denshi Kogaku 13, 17???20 (1963), in Japanese.
  3. F. Zernike, Jr., and P. R. Berman, ???Generation of far infrared as a difference frequency,??? Phys. Rev. Lett. 15, 999???1001 (1965).
    [CrossRef]
  4. T. Yajima and K. Inoue, ???Submillimeter-wave generation by difference-frequency mixing of ruby laser lines in ZnTe,??? IEEE J. Quantum Electron. QE-5, 140???146 (1969).
    [CrossRef]
  5. K. H. Yang, J. R. Morris, P. L. Richards, and Y. R. Shen, ???Phase-matched far-infrared generation by optical mixing of dye laser beams,??? Appl. Phys. Lett. 23, 669???671 (1973).
    [CrossRef]
  6. K. Suto and J. Nishizawa, ???Low-threshold semiconductor Raman laser,??? IEEE J. Quantum Electron. QE- 19, 1251???1254 (1983).
    [CrossRef]
  7. K. Kawase, M.Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, ???Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electrically tuned Ti:sapphire laser,??? Opt. Lett. 24, 1065???1067 (1999).
    [CrossRef]
  8. T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, ???Tunable terahertz wave generation in the 3- to 7-THz region from GaP,??? Appl. Phys. Lett. 83, 237???239 (2003).
    [CrossRef]
  9. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, ???Efficient, tunable, and coherent 0.18???5.27-THz source based on GaSe crystal,??? Opt. Lett. 27, 1454???1456 (2002).
    [CrossRef]
  10. K. Siebert, F. Siebe, M. Thomson, J. Z. Baghbidi, R. Leonhardt, and H. G. Roskos, ???Advances in continuous-wave THz generation," in Terahertz Spectroscopy and Applications II, J. M. Chamberlain, ed., Proc. SPIE 3828, 234???243 (1999).
  11. T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, ???Continuous-wave THz Imaging,??? Electron. Lett. 37, 1461???1463 (2001).
    [CrossRef]
  12. M. Shall, H. Helm, and S. R. Keiding, ???Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,??? Int. J. Infrared Millim. Waves 20, 595???604 (1999).
    [CrossRef]
  13. Y. Avetisyan and K. Kocharyan,, ???A new method of terahertz difference frequency generation using periodically poled waveguide,??? in Conference on Lasers and Electro-Optics, OSA 1999 Technical Digest (Optical Society of America, Washington, D.C., 1999), p. 380.
  14. Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, ???Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,??? Appl. Phys. Lett. 81, 3323???3325 (2002).
    [CrossRef]

Appl. Phys. Lett. (3)

K. H. Yang, J. R. Morris, P. L. Richards, and Y. R. Shen, ???Phase-matched far-infrared generation by optical mixing of dye laser beams,??? Appl. Phys. Lett. 23, 669???671 (1973).
[CrossRef]

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, ???Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,??? Appl. Phys. Lett. 81, 3323???3325 (2002).
[CrossRef]

T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, ???Tunable terahertz wave generation in the 3- to 7-THz region from GaP,??? Appl. Phys. Lett. 83, 237???239 (2003).
[CrossRef]

CLEO 1999 (1)

Y. Avetisyan and K. Kocharyan,, ???A new method of terahertz difference frequency generation using periodically poled waveguide,??? in Conference on Lasers and Electro-Optics, OSA 1999 Technical Digest (Optical Society of America, Washington, D.C., 1999), p. 380.

Denshi Kogaku (1)

J. Nishizawa, ???History and characteristics of semiconductor lasers,??? Denshi Kogaku 13, 17???20 (1963), in Japanese.

Electron. Lett. (1)

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, ???Continuous-wave THz Imaging,??? Electron. Lett. 37, 1461???1463 (2001).
[CrossRef]

IEEE J. Quantum Electron. (3)

K. Suto and J. Nishizawa, ???Low-threshold semiconductor Raman laser,??? IEEE J. Quantum Electron. QE- 19, 1251???1254 (1983).
[CrossRef]

P. R. Smith, D. H. Auston, and M. C. Nuss, ???Subpicosecond photoconducting dipole antennas,??? IEEE J. Quantum Electron. 24, 255???260 (1988).
[CrossRef]

T. Yajima and K. Inoue, ???Submillimeter-wave generation by difference-frequency mixing of ruby laser lines in ZnTe,??? IEEE J. Quantum Electron. QE-5, 140???146 (1969).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

M. Shall, H. Helm, and S. R. Keiding, ???Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,??? Int. J. Infrared Millim. Waves 20, 595???604 (1999).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

F. Zernike, Jr., and P. R. Berman, ???Generation of far infrared as a difference frequency,??? Phys. Rev. Lett. 15, 999???1001 (1965).
[CrossRef]

Proc. SPIE (1)

K. Siebert, F. Siebe, M. Thomson, J. Z. Baghbidi, R. Leonhardt, and H. G. Roskos, ???Advances in continuous-wave THz generation," in Terahertz Spectroscopy and Applications II, J. M. Chamberlain, ed., Proc. SPIE 3828, 234???243 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the generation of timing synchronized dual-wavelength optical pulses.

Fig. 2.
Fig. 2.

(a) Optical spectrum from a highly nonlinear fiber. The component at 1566 nm was newly generated by means of the FWM process. (b) The optical spectrum after spectral filtering. Only the cw laser light was removed.

Fig. 3.
Fig. 3.

Second harmonic generation correlation trace for dual-wavelength optical pulses. The beating at 1.5 THz is in a pulse envelope.

Fig. 4.
Fig. 4.

THz-wavelength tuning curve of a PPLN DFG. The measured THz wavelength (dots) is in good agreement with the calculated value (solid line).

Metrics