Abstract

We present a source of high power femtosecond pulses at 1550 nm with compressed pulses at the end of a single mode fiber (SMF) pigtail. The system generates 34 femtosecond pulses at a repetition rate of 46 MHz, with average powers greater than 400 mW. The pulses are generated in a passively modelocked, erbium-doped fiber laser, and amplified in a short, erbium-doped fiber amplifier. The output of the fiber amplifier consists of highly chirped picosecond pulses. These picosecond pulses are then compressed in standard single mode fiber. While the compressed pulses in the SMF pigtail do show a low pedestal that could be avoided with the use of bulk-optic compression, the desire to compress the pulses in SMF is motivated by the ability to splice the single mode fiber to a nonlinear fiber, for continuum generation applications. We demonstrate that with highly nonlinear dispersion shifted fiber (HNLF) fusion spliced directly to the amplifier output, we generate a supercontinuum spectrum that spans more than an octave, with an average power 400 mW. Such a high power, all-fiber supercontinuum source has many important applications including frequency metrology and bio-medical imaging.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. E. Fermann, A. Galvanauskas, and M. Hofer, ???Ultrafast pulse sources based on multi-mode optical fibers,??? Appl. Phys. B 70, S13???S23, (2000).
    [CrossRef]
  2. D. J. Richardson, V. V. Afanasjev, A. B. Grudinin, and D. N. Payne, ???Amplification of femtosecond pulses in a passive, all-fiber soliton source,??? Opt. Lett. 17, 1596???1598, (1992).
    [CrossRef] [PubMed]
  3. F. O. Ilday, H. Lim, J. R. Buckley, and F. W. Wise. ???Practical all-fiber source of high-power, 120-fs pulses at 1 m,??? Opt. Lett. 28, 1362???1364, (2003).
    [CrossRef]
  4. F. Tauser, A. Leitenstorfer, and W. Zinth. ???Amplified femtosecond pulses from an er:fiber system: Nonlinear pulse shortening and self-referencing detection of the carrier-envelope phase evolution,??? Opt. Express 11, 594, (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-594">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-594</a>.
    [CrossRef] [PubMed]
  5. J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jørgensen, and T. Veng. ???All fiber, octave spanning supercontinuum,??? Opt. Lett. 28, 643???645, (2003).
    [CrossRef] [PubMed]
  6. J. Takayanagi, N. Nishizawa, and T. Goto. ???0.9 ¡« 2.7 m over one octave spanning ultrabroad supercontinuum generation based on all fiber system,??? In Conference on Laser and Electro-Optics , page CTuP27 (OSA, Washington DC, 2004).
  7. B. R.Washburn, S. A. Diddams, N. R. Newbury, J.W. Nicholson, M. F. Yan, and C. G. Jørgensen. ???Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,??? Opt. Lett. 29, 250???252, (2004).
    [CrossRef] [PubMed]
  8. V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley. ???Self-similar propagation of parabolic pulse in normal-dispersion fiber amplifiers,??? J. Opt. Soc. Am. B 19, 461???469, (2002).
    [CrossRef]
  9. J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen. "Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,??? Appl. Phys. B 77, 211???218, (2003).
    [CrossRef]
  10. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey. ???Self-similar propagation and amplification of parabolic pulses in optical fibers,??? Phys. Rev. Lett. 84, 6010, (2000).
    [CrossRef] [PubMed]
  11. M. Oberthaler and R. A. Hopfel. ???Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,??? Appl. Phys. Lett. 63, 1017???1019, (1993).
    [CrossRef]
  12. B. R. Washburn, J. A. Buck, and S. E. Ralph. ???Transform-limited spectral compression due to self-phase modulation in fibers,??? Opt. Lett. 25, 445???447, (2000).
    [CrossRef]
  13. J. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. T¨unnermann. ???SPM-induced spectral compression of picosecond pulses in a single-mode yb-doped fiber amplifier,??? Appl. Phys. B. 74, 191???195, (2002).
    [CrossRef]
  14. Kazunori Naganuma, Kazuo Mogi, and Hajime Yamada. ???General method for ultrashort light pulse chirp measurement,??? IEEE J. Quantum. Electron. 25, 1225???1233, (1989).
    [CrossRef]
  15. J. W. Nicholson, J. Jasapara, W. Rudolph, F. G. Omenetto, and A. J. Taylor. ???Full-field characterization of femtosecond pulses by spectrum and cross-correlation measurements,??? Opt. Lett. 24, 1774???1776, (1999).
    [CrossRef]
  16. J. W. Nicholson and W. Rudolph. ???Noise sensitivity and accuracy of femtosecond pulse retrieval by phase and intensity from correlation and spectrum only (PICASO),??? J. Opt. Soc. Am. B 19, 330???339, (2002).
    [CrossRef]
  17. T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nichimura. ???Silica-based functional fibers with enhanced nonlinearity and their applications,??? IEEE J.S.T. Quantum Electron. 5, 1385???1391, (1999).
    [CrossRef]
  18. C. G. Jørgensen, T. Veng, L. Gruner-Nielsen, and Man Yan. ???Dispersion flattened highly non-linear fiber,??? In European Conference on Communications, page WE376, (2003).
  19. P. S. Westbrook, J. W. Nicholson, K. Feder, and A. D. Yablon. ???UV processing of highly nonlinear fibers for enhanced supercontinuum generation,??? In Optical Fiber Communications Conference, page PDP27, (OSA, Washington DC, 2004).
  20. J. W. Nicholson and M. F. Yan. ???Cross-coherence measurements of supercontinua generated in highly-nonlinear, dispersion shifted fiber at 1550 nm,??? Opt. Express 12, 679???688, (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-679">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-679</a>.
    [CrossRef] [PubMed]
  21. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O???Shea, A. Shreenath, R. Trebino, and R. S. Windeler, ???Frequencyresolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,??? Opt. Lett. 27, 1174???1176, (2002).
    [CrossRef]

Appl. Phys. B (3)

J. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. T¨unnermann. ???SPM-induced spectral compression of picosecond pulses in a single-mode yb-doped fiber amplifier,??? Appl. Phys. B. 74, 191???195, (2002).
[CrossRef]

M. E. Fermann, A. Galvanauskas, and M. Hofer, ???Ultrafast pulse sources based on multi-mode optical fibers,??? Appl. Phys. B 70, S13???S23, (2000).
[CrossRef]

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen. "Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,??? Appl. Phys. B 77, 211???218, (2003).
[CrossRef]

Appl. Phys. Lett. (1)

M. Oberthaler and R. A. Hopfel. ???Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,??? Appl. Phys. Lett. 63, 1017???1019, (1993).
[CrossRef]

IEEE J. Quantum. Electron. (1)

Kazunori Naganuma, Kazuo Mogi, and Hajime Yamada. ???General method for ultrashort light pulse chirp measurement,??? IEEE J. Quantum. Electron. 25, 1225???1233, (1989).
[CrossRef]

IEEE J.S.T. Quantum Electron. (1)

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nichimura. ???Silica-based functional fibers with enhanced nonlinearity and their applications,??? IEEE J.S.T. Quantum Electron. 5, 1385???1391, (1999).
[CrossRef]

J. Opt. Soc. Am. B (2)

OFC (1)

P. S. Westbrook, J. W. Nicholson, K. Feder, and A. D. Yablon. ???UV processing of highly nonlinear fibers for enhanced supercontinuum generation,??? In Optical Fiber Communications Conference, page PDP27, (OSA, Washington DC, 2004).

Opt. Express (2)

Opt. Lett. (7)

Phys. Rev. Lett. (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey. ???Self-similar propagation and amplification of parabolic pulses in optical fibers,??? Phys. Rev. Lett. 84, 6010, (2000).
[CrossRef] [PubMed]

Other (2)

J. Takayanagi, N. Nishizawa, and T. Goto. ???0.9 ¡« 2.7 m over one octave spanning ultrabroad supercontinuum generation based on all fiber system,??? In Conference on Laser and Electro-Optics , page CTuP27 (OSA, Washington DC, 2004).

C. G. Jørgensen, T. Veng, L. Gruner-Nielsen, and Man Yan. ???Dispersion flattened highly non-linear fiber,??? In European Conference on Communications, page WE376, (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic of the amplifier setup.

Fig. 2.
Fig. 2.

Measured input and output spectra from the amplifier, compared to simulated spectra output from the amplifier. Spectra have been offset for clarity.

Fig. 3.
Fig. 3.

(a) Measured autocorrelation of a picosecond pulse immediately after the amplifier. (b) Simulations of the pulse in the time domain.

Fig. 4.
Fig. 4.

Measured amplifier output spectrum as a function of input pre-chirp SMF length. The spectra have been offset vertically for clarity.

Fig. 5.
Fig. 5.

(a) Amplifier output spectral width and average power as a function of pre-chirping SMF length. (b) Measured interferometric autocorrelation for a 34 m length of pre-chirping SMF.

Fig. 6.
Fig. 6.

(a) Pulse compression as a function of output lead length. (b) Spectrum measured at with a lead length for optimal compression. The SMF pre-chirp fiber was 2 m.

Fig. 7.
Fig. 7.

(a) Measured interferometric autocorrelation for a 45 cm SMF compression fiber, plus the autocorrelation obtained from the pulse retrieval algorithm. (b) The femtosecond pulse corresponding to the retrieved correlation.

Fig. 8.
Fig. 8.

(a) Intensity and (b) spectrum from the NLSE model of pulse compression in SMF after the amplifier.

Fig. 9.
Fig. 9.

Measured pulse train for both the oscillator and the amplifier.

Fig. 10.
Fig. 10.

RF spectrum measurements for the oscillator and amplifier (a) at the fundamental pulse repetition rate, and (b) at the tenth harmonic of the pulse repetition rate.

Fig. 11.
Fig. 11.

Supercontinuum measured from the UV exposed HNLF.

Metrics