Abstract

Optical fiber tapers with a waist size larger than 1μm are commonplace in telecommunications and sensor applications. However the fabrication of low-loss optical fiber tapers with subwavelength diameters was previously thought to be impractical due to difficulties associated with control of the surface roughness and diameter uniformity. In this paper we show that very-long ultra-low-loss tapers can in fact be produced using a conventional fiber taper rig incorporating a simple burner configuration. For single-mode operation, the optical losses we achieve at 1.55μm are one order of magnitude lower than losses previously reported in the literature for tapers of a similar size. SEM images confirm excellent taper uniformity. We believe that these low-loss structures should pave the way to a whole range of fiber nanodevices.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. Nagayama, K. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, �??Ultra-low-loss (0.1484 dB/km) pure silica core fiber and extension of transmission distance,�?? Electron Lett. 38, 1168-1169 (2002).
    [CrossRef]
  2. L.C. Bobb, and P.M. Shankar, �??Tapered Optical Fiber Components and Sensors,�?? Microwave J., 218-228 (May 1992).
  3. H. Murata, Handbook of Optical Fibers and Cables 2nd ed. (Marcel Dekker, New York, 1996).
  4. D. K. Mynbaev, and L.L. Scheiner, Fiber-Optic Communications Technology (Prentice Hall, New York, (2001).
  5. T.A. Birks, W.J. Wadsworth, and P. St. J. Russell, �??Supercontinuum generation in tapered fibers,�?? Opt. Lett. 25, 1415-1417 (2000).
    [CrossRef]
  6. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, �??Subwavelength-diameter silica wires for low-loss optical wave guiding,�?? Nature 426, 816-818 (2003).
    [CrossRef] [PubMed]
  7. Z. L. Wang, R. P. P. Gao, J. L. Gole, and J. D. Stout, �??Silica nanotubes and nanofiber arrays,�?? Adv. Mater. 12, 1938�??1940 (2000).
    [CrossRef]
  8. Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, �??Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,�?? J. Am. Chem. Soc. 124, 1817�??1822 (2002).
    [CrossRef] [PubMed]
  9. J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S.T. Lee, �??Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers,�?? Adv. Mater. 15, 70�??73 (2003).
    [CrossRef]
  10. J. Bures, and R. Ghosh, �??Power density of the evanescent field in the vicinity of a tapered fiber,�?? J. Opt. Soc. Am. A 16, 1992-1996 (1999).
    [CrossRef]
  11. F. Bilodeau, K. 0. Hill, D. C. Johnson, and S. Faucher, �??Compact, low-loss, fused biconical taper couplers: overcoupled operation and antisymmetric supermode cutoff,�?? Opt. Lett. 12, 634-636 (1987).
    [CrossRef] [PubMed]
  12. D. Marcuse, and R. M. Derosier, �??Mode conversion caused by diameter changes of a round dielectric waveguide," Bell Syst. Tech. J. 48, 3217�??3232 (1969).
  13. F. Ladouceur, �??Roughness, Inhomogeneity, and integrated optics,�?? J. Lightwave Technol. 15, 1020�??1025 (1997).
    [CrossRef]
  14. T.A. Birks, and Y.W. Li, �??The shape of fiber tapers,�?? J. Lightwave Technol. 10, 432-438 (1992).
    [CrossRef]
  15. J.M. Senior, Optical fiber communications, Principles and Practice (Prentice Hall Europe, 1992)
  16. S. Lacroix, R. Bourbommais, F. Gonthier, and J. Bures, �??Tapered monomode optical fibers: understanding large power transfer,�?? Applied Optics 25, 4421-4425 (1986).
    [CrossRef] [PubMed]
  17. J.D. Love, �??Spot size, adiabaticity and diffraction in tapered fibers,�?? Electron. Lett. 23, 993-994 (1987).
    [CrossRef]
  18. A.W. Snyder, and J.D. Love, Optical waveguide theory (Kluwer Academic Publishers, Norwell, 2000).
  19. K. Okamoto, Fundamentals of optical waveguides (Academic Press, San Diego, 2000).

Adv. Mater.

J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S.T. Lee, �??Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers,�?? Adv. Mater. 15, 70�??73 (2003).
[CrossRef]

Z. L. Wang, R. P. P. Gao, J. L. Gole, and J. D. Stout, �??Silica nanotubes and nanofiber arrays,�?? Adv. Mater. 12, 1938�??1940 (2000).
[CrossRef]

Applied Optics

S. Lacroix, R. Bourbommais, F. Gonthier, and J. Bures, �??Tapered monomode optical fibers: understanding large power transfer,�?? Applied Optics 25, 4421-4425 (1986).
[CrossRef] [PubMed]

Bell Syst. Tech. J.

D. Marcuse, and R. M. Derosier, �??Mode conversion caused by diameter changes of a round dielectric waveguide," Bell Syst. Tech. J. 48, 3217�??3232 (1969).

Electron Lett.

K. Nagayama, K. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, �??Ultra-low-loss (0.1484 dB/km) pure silica core fiber and extension of transmission distance,�?? Electron Lett. 38, 1168-1169 (2002).
[CrossRef]

Electron. Lett.

J.D. Love, �??Spot size, adiabaticity and diffraction in tapered fibers,�?? Electron. Lett. 23, 993-994 (1987).
[CrossRef]

J. Am. Chem. Soc.

Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, �??Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,�?? J. Am. Chem. Soc. 124, 1817�??1822 (2002).
[CrossRef] [PubMed]

J. Lightwave Technol.

F. Ladouceur, �??Roughness, Inhomogeneity, and integrated optics,�?? J. Lightwave Technol. 15, 1020�??1025 (1997).
[CrossRef]

T.A. Birks, and Y.W. Li, �??The shape of fiber tapers,�?? J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

J. Opt. Soc. Am. A

Microwave J.

L.C. Bobb, and P.M. Shankar, �??Tapered Optical Fiber Components and Sensors,�?? Microwave J., 218-228 (May 1992).

Nature

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, �??Subwavelength-diameter silica wires for low-loss optical wave guiding,�?? Nature 426, 816-818 (2003).
[CrossRef] [PubMed]

Opt. Lett.

Other

A.W. Snyder, and J.D. Love, Optical waveguide theory (Kluwer Academic Publishers, Norwell, 2000).

K. Okamoto, Fundamentals of optical waveguides (Academic Press, San Diego, 2000).

H. Murata, Handbook of Optical Fibers and Cables 2nd ed. (Marcel Dekker, New York, 1996).

D. K. Mynbaev, and L.L. Scheiner, Fiber-Optic Communications Technology (Prentice Hall, New York, (2001).

J.M. Senior, Optical fiber communications, Principles and Practice (Prentice Hall Europe, 1992)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Comparison between specific losses of the tapers fabricated in this paper and the data reported in literature [6]. Dynamic and static losses refer to measurements performed during the nanotaper fabrication and after it, respectively.

Fig. 2.
Fig. 2.

Intensity distribution of the propagating mode for three different nanotaper sizes. Inset: Simulations showing the distance from the nanotaper at which the intensity decreases 10dB.

Fig. 3.
Fig. 3.

SEM picture of a nanotaper with 160nm radius.

Tables (1)

Tables Icon

Table 1. Static loss measurement of nanotapers with r=375nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V = 2 · π · r · NA λ .

Metrics