Abstract

We have developed holographic optical tweezers that can manipulate many particles simultaneously in three dimensions in order to create micro-crystal structures that extend over many tens of microns. The technique uses specific hologram-design algorithms to create structures that can be dynamically scaled or rotated about arbitrary axes. We believe the generation and control of pre-determined crystal-like structures have significant potential in fields as diverse as photonic-crystal construction, seeding of biological tissue growth and creation of metrological standards within nanotechnology.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, �??Observation of a single-beam gradient force optical trap for dielectric particles,�?? Opt. Lett., 11, 288-290, (1986)
    [CrossRef] [PubMed]
  2. J. E. Molloy, M. J. Padgett, �??Lights, action: optical tweezers,�?? Cont. Phys., 43, 241, (2002)
    [CrossRef]
  3. S. M. Block, D. F. Blair, H. C. Berg, �??Compliance of bacterial flagella measured with optical tweezers,�?? Nature, 338, 514 (1989)
    [CrossRef] [PubMed]
  4. H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubenstien-Dunlop, �??Direct observation of transfer of angular-momentum to absorptive particles from a laser-beam with a phase singularity,�?? Phys. Rev. Lett., 75, 826, (1995)
    [CrossRef] [PubMed]
  5. A. T. O�??Neil, I. MacVicar, L. Allen, M. J. Padgett, �??Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,�?? Phys. Rev. Lett., 88, 03601, (2002)
  6. Cell robotics International Inc. (Alberqureque, USA), P.A.L.M GmbH (Bernried, Germany)
  7. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuharah, �??Pattern-formation and flow-control of fine particles by laser-scanning micromanipulation�??, Opt. Lett, 16, 1463, (1991)
    [CrossRef] [PubMed]
  8. K. Visscher, G. J. Brakenhoff, J. J. Krol, �??Micromanipulation by multiple optical traps created by a singlefast scanning trap integrated with the bilateral confocal scanning laser microscope,�?? Cytometry, 14, 105, (1993)
    [CrossRef] [PubMed]
  9. J. E. Molloy, J. E. Burns, J. C. Sparrow, R. T. Tregear, J. Kendrickjones, D. C. S. White, �??Single-molecule mechanics of heavy-meromyosin and s1 interacting with rabbit or drosophila actins using optical tweezers,�?? Biophys. J., 68, S298, (1995)
  10. A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, M. W. Berns, �??Interferometric optical tweezers,�?? Opt. Commun., 133, 7, (1997)
    [CrossRef]
  11. M. P. MacDonald, L. Paterson , K. Volke-Sepulveda, J. Arlt, W. Sibbett, K. Dholakia, �??Creation and manipulation of three-dimensional optically trapped structures,�?? Science, 296, 1101-1103, (2002)
    [CrossRef] [PubMed]
  12. Y. Hayasaki, S. Sumi, K. Mutoh, S. Suzuki, M. Itoh, T. Yatagai, N. Nishida, �??Optical manipulation of microparticles using diffractive optical elements,�?? Proc. SPIE, 2778, 229-230, (1996)
  13. J. E. Curtis, B. A. Koss, D. G. Grier, �??Dynamic holographic optical tweezers,�?? Opt. Commun., 207, 169-175, (2002)
    [CrossRef]
  14. R. L. Eriksen, V. R. Daria, P. J. Rodrigo, J. Gluckstad,�??Computer-controlled orientation of multiple optically-trapped microscopic particles,�?? Microelectronic Engineering, 67-8, 872-878, (2003)
    [CrossRef]
  15. D. G. Grier, �??A revolution in optical manipulation,�?? Nature, 424, 810-816, (2003)
    [CrossRef] [PubMed]
  16. V. Soifer, V. Kotlyar, L. Donskolovich, Iterative Methods for Diffractive Optical Elements Computaion, (Taylor and Francis, 1997)
  17. J. Liesener, M. Reicherter, T. Haist, H. J. Tiziani, �??Multi-functional optical tweezers using computer-generated holograms,�?? Opt. Commun., 185, 77-82, (2000)
    [CrossRef]
  18. V. Bingelyte, J. Leach, J. Courtial, M. J. Padgett, �??Optically controlled three-dimensional rotation of microscopic objects,�?? Appl. Phys. Lett., 82, 829, (2003)
    [CrossRef]
  19. P. Jordan, H. Clare, L. Flendrig, J. Leach, J. Cooper, M. J. Padgett, �??Permanent 3D Microstructures in a Polymeric Host created using Holographic Optical Tweezers,�?? J. Mod. Opt., in press.
  20. G. Sinclair, P. Jordan, J. Leach, J. Cooper, M. J. Padgett, �??Defining the trapping limits of holographic optical tweezers,�?? J. Mod. Opt., 51, 409-414, (2004)
    [CrossRef]
  21. Hamamatsu Spatial Light Modulator
  22. M. A. Seldowitz, J. P. Allebach, D. W. Sweeny, �??Synthesis of digital holograms by direct binary search,�?? Appl. Opt. 26, 2788, (1987)
    [CrossRef] [PubMed]
  23. Laczik, Z.J., �??3-D beam shaping using diffractive optical elements,�?? Proc. SPIE, 4770, 104-111, (2002)
    [CrossRef]
  24. J. C. Y. Dunn, M. L. Yarmush, H. G. Koebe, R. G. Tompkins, �??Hepatocyte function and extracellular-matrix geometry �?? long-term culture in a sandwich configuration,�?? FASEB J., 3, 174 (1989)
    [PubMed]

Appl. Opt.

Appl. Phys. Lett.

V. Bingelyte, J. Leach, J. Courtial, M. J. Padgett, �??Optically controlled three-dimensional rotation of microscopic objects,�?? Appl. Phys. Lett., 82, 829, (2003)
[CrossRef]

Biophys. J.

J. E. Molloy, J. E. Burns, J. C. Sparrow, R. T. Tregear, J. Kendrickjones, D. C. S. White, �??Single-molecule mechanics of heavy-meromyosin and s1 interacting with rabbit or drosophila actins using optical tweezers,�?? Biophys. J., 68, S298, (1995)

Cont. Phys.

J. E. Molloy, M. J. Padgett, �??Lights, action: optical tweezers,�?? Cont. Phys., 43, 241, (2002)
[CrossRef]

Cytometry

K. Visscher, G. J. Brakenhoff, J. J. Krol, �??Micromanipulation by multiple optical traps created by a singlefast scanning trap integrated with the bilateral confocal scanning laser microscope,�?? Cytometry, 14, 105, (1993)
[CrossRef] [PubMed]

FASEB J.

J. C. Y. Dunn, M. L. Yarmush, H. G. Koebe, R. G. Tompkins, �??Hepatocyte function and extracellular-matrix geometry �?? long-term culture in a sandwich configuration,�?? FASEB J., 3, 174 (1989)
[PubMed]

J. Mod. Opt.

P. Jordan, H. Clare, L. Flendrig, J. Leach, J. Cooper, M. J. Padgett, �??Permanent 3D Microstructures in a Polymeric Host created using Holographic Optical Tweezers,�?? J. Mod. Opt., in press.

G. Sinclair, P. Jordan, J. Leach, J. Cooper, M. J. Padgett, �??Defining the trapping limits of holographic optical tweezers,�?? J. Mod. Opt., 51, 409-414, (2004)
[CrossRef]

Microelectronic Engineering

R. L. Eriksen, V. R. Daria, P. J. Rodrigo, J. Gluckstad,�??Computer-controlled orientation of multiple optically-trapped microscopic particles,�?? Microelectronic Engineering, 67-8, 872-878, (2003)
[CrossRef]

Nature

D. G. Grier, �??A revolution in optical manipulation,�?? Nature, 424, 810-816, (2003)
[CrossRef] [PubMed]

S. M. Block, D. F. Blair, H. C. Berg, �??Compliance of bacterial flagella measured with optical tweezers,�?? Nature, 338, 514 (1989)
[CrossRef] [PubMed]

Opt. Commun.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, M. W. Berns, �??Interferometric optical tweezers,�?? Opt. Commun., 133, 7, (1997)
[CrossRef]

J. E. Curtis, B. A. Koss, D. G. Grier, �??Dynamic holographic optical tweezers,�?? Opt. Commun., 207, 169-175, (2002)
[CrossRef]

J. Liesener, M. Reicherter, T. Haist, H. J. Tiziani, �??Multi-functional optical tweezers using computer-generated holograms,�?? Opt. Commun., 185, 77-82, (2000)
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubenstien-Dunlop, �??Direct observation of transfer of angular-momentum to absorptive particles from a laser-beam with a phase singularity,�?? Phys. Rev. Lett., 75, 826, (1995)
[CrossRef] [PubMed]

A. T. O�??Neil, I. MacVicar, L. Allen, M. J. Padgett, �??Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,�?? Phys. Rev. Lett., 88, 03601, (2002)

Proc. SPIE

Y. Hayasaki, S. Sumi, K. Mutoh, S. Suzuki, M. Itoh, T. Yatagai, N. Nishida, �??Optical manipulation of microparticles using diffractive optical elements,�?? Proc. SPIE, 2778, 229-230, (1996)

Laczik, Z.J., �??3-D beam shaping using diffractive optical elements,�?? Proc. SPIE, 4770, 104-111, (2002)
[CrossRef]

Science

M. P. MacDonald, L. Paterson , K. Volke-Sepulveda, J. Arlt, W. Sibbett, K. Dholakia, �??Creation and manipulation of three-dimensional optically trapped structures,�?? Science, 296, 1101-1103, (2002)
[CrossRef] [PubMed]

Other

Cell robotics International Inc. (Alberqureque, USA), P.A.L.M GmbH (Bernried, Germany)

V. Soifer, V. Kotlyar, L. Donskolovich, Iterative Methods for Diffractive Optical Elements Computaion, (Taylor and Francis, 1997)

Hamamatsu Spatial Light Modulator

Supplementary Material (2)

» Media 1: MPG (3001 KB)     
» Media 2: MPG (1290 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the optical tweezers and the SLM. The plane of the SLM, a, is imaged into the pupil of the microscope objective plane a*. The planes b and c are imaged into the focal region of the microscope.

Fig. 2.
Fig. 2.

[3.1MB] Holograms and corresponding image sequence of the rotation of a cubic unit cell. The cell is constructed from 2µm silica beads, each separated by 5µm. The hologram patterns used to create the traps were calculated in real time. They are a combination of diffraction gratings and Fresnel lenses.

Fig. 3.
Fig. 3.

[1.3MB] Optically trapped diamond unit cell constructed from 18 beads of 2µm diameter and suspended in water. As the camera focus is moved through the structure (left to right), separate planes come into focus (top row). We used a static phase hologram (far right) to create the required 3D intensity distribution; the intensity cross-section in the top plane is shown (far left).

Fig. 4.
Fig. 4.

[2.9MB] Glass beads (2 µm diameter) trapped in the corners of an imaginary rotating tetrahedron. The phase-hologram patterns used for the generation of the corresponding optical traps are shown on the left; the centre column shows the corresponding video frames. A series of hologram patterns (including the ones shown) were pre-calculated using a direct-binary-search algorithm and then successively displayed on the SLM.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε = i = 1 N U i U T , i ,

Metrics