Abstract

Antiguiding, as opposed to positive index-contrast guiding (or index-guiding), in microstructured air-silica optical fibers is shown to have a significant influence on the fiber’s transmission property, especially when perturbations exist near the defect core. Antiguided modes are numerically analyzed in such fibers by treating the finite periodic air-silica composite (including the central defect) as the core and outer bulk silica region as the cladding. Higher-order modes, which can couple energy from the fundamental mode in the presence of waveguide irregularities, are predicted to be responsible for high leakage loss of realistic holey fibers. The modal property of an equivalent simple step-index antiguide model is also analyzed. Results show that approximation from a composite core waveguide to a simple step-index fiber always neglects some important modal characteristics.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, �??All-silica single-mode optical fiber with photonic crystal cladding,�?? Opt. Lett. 21, 1547�??1549 (1996).
    [CrossRef] [PubMed]
  2. T. A. Birks, J. C. Knight, and P. St. J. Russel, �??Endlessly single-mode photonic crystal fiber,�?? Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  3. J. Broeng, S. E. Barkou, T. Søndergaard, and A. Bjarklev, �??Analysis of air-guiding photonic bandgap fibers,�?? Opt. Lett. 25, 96-98 (2000).
    [CrossRef]
  4. T. M. Monro, D. J. Richardson, �??Holey optical fibres: Fundamental properties and device applications,�?? C. R. Physique 4, 175-186 (2003)
    [CrossRef]
  5. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos and Y. Fink, �??Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,�?? Nature 420, 650-653 (2002).
    [CrossRef] [PubMed]
  6. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, �??Holey Optical Fibers: An Efficient Modal Model,�?? J. Lightwave Technol. 17, 1093-1102 (1999).
    [CrossRef]
  7. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andrés and M. V. Andrés, �??Full-vector analysis of a realistic photonic crystal fiber,�?? Opt. Lett. 24, 276-278 (1999).
    [CrossRef]
  8. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, �??Multipole method for microstructured optical fibers. I. Formulation,�?? J. Opt. Soc. Am. B 19, 322- 2330 (2002).
    [CrossRef]
  9. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, and R. C. McPhedran, �??Multipole method for microstructured optical fibers. II. Implementation and results,�?? J. Opt. Soc. Am. B 19, 2331-2340 (2002).
    [CrossRef]
  10. B. T. Kuhlmey, R. C. McPhedran and C. M. de Sterke, �??Modal cutoff in microstructured optical fibers,�?? Opt. lett. 27, 1684-1686 (2002).
    [CrossRef]
  11. N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen and K. P. Hansen, �??Modal cutoff and the V parameter in photonic crystal fibers,�?? Opt. Lett. 28, 1879-1881 (2003).
    [CrossRef] [PubMed]
  12. K. Saitoh and M. Koshiba, �??Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,�?? IEEE J. Quantum Electron. 38, 927-933 (2002).
    [CrossRef]
  13. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, �??Grating resonances in airsilica microstructured optical fibers,�?? Opt. Lett. 24, 1460-1462 (1999).
    [CrossRef]
  14. C. Kerbage, B. J. Eggleton, P. Westbrook, and R. S. Windeler, "Experimental and scalar beam propagation analysis of an air-silica microstructure fiber," Opt. Express 7, 113-122 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-3-113<a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-3-113">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-3-113</a>
    [CrossRef] [PubMed]
  15. B. J. Eggleton, C. Kerbage, P. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13- 698<a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13- 698">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13- 698</a>
    [CrossRef] [PubMed]
  16. E. A. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783-1809 (1964).
  17. G. R. Hadley, �??Transparent boundary condition for the beam propagation method,�?? J. Quantum Electron 28, 363-370 (1992).
    [CrossRef]
  18. J. Chilwell and I. Hodgkinson, �??Thin films field-transfer matrix theory of planar multiplayer waveguides and reflection from prism-loaded waveguides,�?? J. Opt. Soc. Am. A 1, 742�??753 (1984).
    [CrossRef]
  19. P. R. McIsaac, �??�??Symmetry-induced modal characteristics of uniform waveguides. I. Summary of results,�??�?? IEEE Trans. Microwave Theory Tech. MTT-23, 421�??429 (1975).
    [CrossRef]
  20. M. D. Feit and J. A. Fleck, �??Computation of mode properties in optical fiber waveguides by a propagating beam method,�?? Appl. Opt. 19, 1154-1164 (1980).
    [CrossRef] [PubMed]
  21. T. Erdogan, "Fiber Grating Spectra," J. Lightwave Technol. 155, 1277-1294 (1997).
    [CrossRef]
  22. L. Dong, L. Reekie, J. L Cruz, J. E. Caplen and D. N. Payne, �??Cladding mode suppression in fibre Bragg gratings using fibres with a depressed cladding,�?? ECOC, 1.53-56 (1996).
  23. D. Zhou and L. J. Mawst, �??High power single-mode antiresonant reflecting optical waveguide-type vertical cavity surface emitting lasers,�?? IEEE J. Quantum Electron. 38, 1599�??1606 (2002).
    [CrossRef]
  24. D. S. Song, S.-H. Kim, H.-G. Park, C.-K. Kim, and Y.-H. Lee, �??Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,�?? Appl. Phys. Lett. 80, 3901-3903 (2002).
    [CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. S. Song, S.-H. Kim, H.-G. Park, C.-K. Kim, and Y.-H. Lee, �??Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,�?? Appl. Phys. Lett. 80, 3901-3903 (2002).
[CrossRef]

Bell Syst. Tech. J. (1)

E. A. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783-1809 (1964).

C. R. Physique (1)

T. M. Monro, D. J. Richardson, �??Holey optical fibres: Fundamental properties and device applications,�?? C. R. Physique 4, 175-186 (2003)
[CrossRef]

ECOC (1)

L. Dong, L. Reekie, J. L Cruz, J. E. Caplen and D. N. Payne, �??Cladding mode suppression in fibre Bragg gratings using fibres with a depressed cladding,�?? ECOC, 1.53-56 (1996).

IEEE J. Quantum Electron (2)

D. Zhou and L. J. Mawst, �??High power single-mode antiresonant reflecting optical waveguide-type vertical cavity surface emitting lasers,�?? IEEE J. Quantum Electron. 38, 1599�??1606 (2002).
[CrossRef]

K. Saitoh and M. Koshiba, �??Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,�?? IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

P. R. McIsaac, �??�??Symmetry-induced modal characteristics of uniform waveguides. I. Summary of results,�??�?? IEEE Trans. Microwave Theory Tech. MTT-23, 421�??429 (1975).
[CrossRef]

J. Lightwave Technol. (2)

T. Erdogan, "Fiber Grating Spectra," J. Lightwave Technol. 155, 1277-1294 (1997).
[CrossRef]

T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, �??Holey Optical Fibers: An Efficient Modal Model,�?? J. Lightwave Technol. 17, 1093-1102 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, �??Multipole method for microstructured optical fibers. I. Formulation,�?? J. Opt. Soc. Am. B 19, 322- 2330 (2002).
[CrossRef]

B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, and R. C. McPhedran, �??Multipole method for microstructured optical fibers. II. Implementation and results,�?? J. Opt. Soc. Am. B 19, 2331-2340 (2002).
[CrossRef]

J. Quantum Electron (1)

G. R. Hadley, �??Transparent boundary condition for the beam propagation method,�?? J. Quantum Electron 28, 363-370 (1992).
[CrossRef]

Nature (1)

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos and Y. Fink, �??Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,�?? Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (6)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) A commercial large-mode-area single mode MOF. (b) Its Veff is plotted as a function of normalized frequency Λ/λ (red curve). (b) also gives Veff curves for other types of fibers characterized by different d/Λ values (indicated beside each curve).

Fig. 2.
Fig. 2.

(a) Index profile of the MOF under studied. Black circles represent air-holes. The central red circle has diameter d0 =d and refractive index n 0. (b) Zoom-in plot at the central defect region, with unit cell of the PC highlighted in light-red. (c) Equivalent simple antiguide. Core area (grey) has a diameter of 67.8308µm and a refractive index n 1 of 1.4443. Red circle has diameter d 0’ and refractive index n 0’.

Fig. 3.
Fig. 3.

E-field distributions for (a) LP01-like (b) LP11-like (c) LP21-like and (d) LP02-like mode. Solid-black curve is the real part of the mode filed and dotted-red curve is the imaginary part. 2D color plots are in accord with 1D radial plots, with extra azimuthal field variations. Only real part of the mode field is shown in 2D color plots, which is true for all subsequent figures. The same color scale is shared by all 2D plots presented in this paper.

Fig. 4.
Fig. 4.

Upper figure shows the mode spectrum of MOF-1 excited by a rectangular-shaped launching field of width Λ. Launching position is at x=y=0µm. Six mode profiles show modes a, b, c, d, e, f denoted in the spectrum.

Fig. 5.
Fig. 5.

Upper figure shows the mode spectrum of MOF-1 excited by a rectangular-shaped launching field of width Λ. Launching position is at x=2.5×Λ, y=0µm. Six mode profiles show mode-b, c, d, e, f, g denoted in the spectrum. Mode-a is the same as that in Fig. 4.

Fig. 6.
Fig. 6.

E field distributions of: (a) LP01-like (b) LP11-like (c) LP02-like and (d) LP121-like mode.

Fig. 7.
Fig. 7.

Upper figure shows the mode spectrum of MOF-2 excited by a rectangular-shaped launching field of width Λ. Launching position is at x=0µm, y=0µm. Only mode-a and e are shown. Mode-b, c, d corresponding to mode-a, b, c in the next figure, where the excitation is asymmetric. Fiber length here is 214 µm.

Fig. 8.
Fig. 8.

Upper figure shows the mode spectrum of MOF-2 excited by a rectangular-shaped launching field of width Λ. Launching position is at x=2.5×Λ, y=0µm. Six mode profiles show mode-a, b, c, d, f, g denoted in the spectrum. Mode-e is the same as that in Fig. 7.

Tables (5)

Tables Icon

Table 1. Effective indices and confinement losses for four modes in Fig. 3.

Tables Icon

Table 2. Effective indices and confinement losses for six modes in Fig. 4.

Tables Icon

Table 3. Effective indices and confinement losses for six modes in Fig. 5.

Tables Icon

Table 4. Effective indices and confinement losses for four modes in Fig. 6.

Tables Icon

Table 5. Effective indices and confinement losses for six modes in Fig. 8.

Metrics