Abstract

We demonstrate real-time acquisition, processing, and display of tissue structure, birefringence, and blood flow in a multi-functional optical coherence tomography (MF-OCT) system. This is accomplished by efficient data processing of the phase-resolved inteference patterns without dedicated hardware or extensive modification to the high-speed fiber-based OCT system. The system acquires images of 2048 depth scans per second, covering an area of 5 mm in width×1.2 mm in depth with real-time display updating images in a rolling manner 32 times each second. We present a video of the system display as images from the proximal nail fold of a human volunteer are taken.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178-81 (1991).
    [CrossRef] [PubMed]
  2. W. Drexler, U. Morgner, F.X. Kärtner, C. Pitris, S.A. Boppart, X.D. Li, E.P. Ippen, J.G. Fujimoto, �??In vivo ultrahigh-resolution optical coherence tomography,�?? Opt. Lett. 24, 1221-3 (1999).
    [CrossRef]
  3. A.M. Rollins, M.D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, J.A. Izatt, �??In vivo video rate optical coherence tomography,�?? Opt. Express 3, 219-29 (1998), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219</a>
    [CrossRef] [PubMed]
  4. J.F. de Boer, T.E. Milner, M.J.C. van Gemert, J.S. Nelson, �??Two dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,�?? Opt. Lett. 22, 934-6 (1997).
    [CrossRef] [PubMed]
  5. M.J. Everett, K. Schoenenberger, B.W. Colston, L.B. Da Silva, �??Birefringence characterization of biological tissue by use of optical coherence tomography,�?? Opt. Lett. 23, 228-30 (1998).
    [CrossRef]
  6. J.F. de Boer, S.M. Srinivas, A. Malekafzali, Z. Chen, J.S. Nelson, �??Imaging thermally damaged tissue by polarization sensitive optical coherence tomography,�?? Opt. Express 3, 212-218 (1998), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-212">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-212</a>.
    [CrossRef] [PubMed]
  7. J.M. Schmitt, S.H. Xiang, �??Cross-polarized backscatter in optical coherence tomography of biological tissue,�?? Opt. Lett. 23, 1060-2 (1998).
    [CrossRef]
  8. J.F. de Boer, T.E. Milner, J.S. Nelson, �??Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,�?? Opt. Lett. 24, 300-2 (1999).
    [CrossRef]
  9. G. Yao, L.V. Wang, �??Two dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,�?? Opt. Lett. 24, 537-9 (1999).
    [CrossRef]
  10. C.E. Saxer, J.F. de Boer, B.H. Park, Y. Zhao, Z. Chen, J.S. Nelson, �??High-speed fiber-based polarizationsensitive optical coherence tomography of in vivo human skin,�?? Opt. Lett. 25, 1355-7 (2000).
    [CrossRef]
  11. J.E. Roth, J.A. Kozak, S. Yazdanfar, A.M. Rollins, J.A. Izatt, �??Simplified method for polarization-sensitive optical coherence tomography,�?? Opt. Lett. 26, 1069-71 (2001).
    [CrossRef]
  12. R.V. Kuranov, V.V. Sapozhnikova, I.V. Turchin, E.V. Zagainova, V.M. Gelikonov, V.A. Kamensky, L.B. Snopova, N.N. Prodanetz, �??Complementary use of cross-polarization and standard OCT for differential diagnosis of pathological tissues,�?? Opt. Express 10, 707-713 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-707">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-707</a>.
    [CrossRef] [PubMed]
  13. D. Fried, J. Xie, S. Shafi, J.D.B. Featherstone, T.M. Breunig, C. Le, �??Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,�?? J. Biomed. Opt. 7, 618-27 (2002).
    [CrossRef] [PubMed]
  14. Z. Chen, T.E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M.J.C. van Gemert, J.S. Nelson, �??Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,�?? Opt. Lett. 22, 1119-21 (1997).
    [CrossRef] [PubMed]
  15. J.A. Izatt, M.D. Kulkarni, S. Yazdanfar, J.K. Barton, A.J. Welch, �??In vivo bi-directional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,�?? Opt. Lett. 22, 1439-41 (1997).
    [CrossRef]
  16. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J.F. de Boer, J.S. Nelson, �??Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,�?? Opt. Lett. 25, 114-6 (2000).
    [CrossRef]
  17. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J.F. de Boer, J.S. Nelson, �??Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,�?? Opt. Lett. 25, 1358 (2000).
    [CrossRef]
  18. V. Westphal, S. Yazdanfar, A.M. Rollins, J.A. Izatt, �??Real-time, high velocity-resolution color Doppler optical coherence tomography,�?? Opt. Lett. 27, 34-6 (2002).
    [CrossRef]
  19. A.M. Rollins, S. Yazdanfar, J.K. Barton, J.A. Izatt, �??Real-time in vivo color Doppler optical coherence tomography,�?? J. Biomed. Opt. 7, 123-9 (2002).
    [CrossRef] [PubMed]
  20. Y. Zhao, Z. Chen, Z. Ding, H. Ren, J.S. Nelson, �??Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation,�?? Opt. Lett. 27, 98-100 (2002).
    [CrossRef]
  21. M.C. Pierce, B.H. Park, B. Cense, J.F. de Boer, �??Simultaneous intensity, birefringence, and flow measurements with high-speed fiber-based optical coherence tomography,�?? Opt. Lett. 27, 1534-6 (2002).
    [CrossRef]
  22. G.J. Tearney, B.E. Bouma, J.G. Fujimoto, �??High-speed phase- and group-delay scanning with a grating based phase control delay line,�?? Opt. Lett. 22, 1811-3 (1997).
    [CrossRef]
  23. R. Tripathi, N. Nassif, J.S. Nelson, B.H. Park, J.F. de Boer, �??Spectral shaping for non-Gaussian source spectra in optical coherence tomography,�?? Opt. Lett. 27, 406-8 (2002).
    [CrossRef]
  24. J.F. de Boer, C.E. Saxer, J.S. Nelson, �??Stable carrier generation and phase-resolved digital data processing in optical coherence tomography,�?? Appl. Opt. 40, 5787-90 (2001).
    [CrossRef]
  25. B.H. Park, C. Saxer, S.M. Srinivas, J.S. Nelson, J.F. de Boer, �??In vivo burn depth determination by highspeed fiber-based polarization sensitive optical coherence tomography,�?? J. Biomed. Opt. 6, 474-9 (2001).
    [CrossRef] [PubMed]
  26. X.J. Wang, T.E. Milner, J.S. Nelson, �??Characterization of fluid-flow velocity by optical Doppler tomography,�?? Opt. Lett. 20, 1337-9 (1995).
    [CrossRef] [PubMed]
  27. T. Lindmo, D.J. Smithies, Z. Chen, J.S. Nelson, T.E. Milner, �??Accuracy and noise in optical Doppler tomography studied by Monte Carlo simulation,�?? Phys. Med. Biol. 43, 3045-64 (1998).
    [CrossRef] [PubMed]

Appl. Opt. (1)

J. Biomed. Opt. (3)

D. Fried, J. Xie, S. Shafi, J.D.B. Featherstone, T.M. Breunig, C. Le, �??Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,�?? J. Biomed. Opt. 7, 618-27 (2002).
[CrossRef] [PubMed]

A.M. Rollins, S. Yazdanfar, J.K. Barton, J.A. Izatt, �??Real-time in vivo color Doppler optical coherence tomography,�?? J. Biomed. Opt. 7, 123-9 (2002).
[CrossRef] [PubMed]

B.H. Park, C. Saxer, S.M. Srinivas, J.S. Nelson, J.F. de Boer, �??In vivo burn depth determination by highspeed fiber-based polarization sensitive optical coherence tomography,�?? J. Biomed. Opt. 6, 474-9 (2001).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (18)

M.C. Pierce, B.H. Park, B. Cense, J.F. de Boer, �??Simultaneous intensity, birefringence, and flow measurements with high-speed fiber-based optical coherence tomography,�?? Opt. Lett. 27, 1534-6 (2002).
[CrossRef]

J.E. Roth, J.A. Kozak, S. Yazdanfar, A.M. Rollins, J.A. Izatt, �??Simplified method for polarization-sensitive optical coherence tomography,�?? Opt. Lett. 26, 1069-71 (2001).
[CrossRef]

V. Westphal, S. Yazdanfar, A.M. Rollins, J.A. Izatt, �??Real-time, high velocity-resolution color Doppler optical coherence tomography,�?? Opt. Lett. 27, 34-6 (2002).
[CrossRef]

Y. Zhao, Z. Chen, Z. Ding, H. Ren, J.S. Nelson, �??Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation,�?? Opt. Lett. 27, 98-100 (2002).
[CrossRef]

R. Tripathi, N. Nassif, J.S. Nelson, B.H. Park, J.F. de Boer, �??Spectral shaping for non-Gaussian source spectra in optical coherence tomography,�?? Opt. Lett. 27, 406-8 (2002).
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J.F. de Boer, J.S. Nelson, �??Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,�?? Opt. Lett. 25, 114-6 (2000).
[CrossRef]

X.J. Wang, T.E. Milner, J.S. Nelson, �??Characterization of fluid-flow velocity by optical Doppler tomography,�?? Opt. Lett. 20, 1337-9 (1995).
[CrossRef] [PubMed]

J.F. de Boer, T.E. Milner, M.J.C. van Gemert, J.S. Nelson, �??Two dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,�?? Opt. Lett. 22, 934-6 (1997).
[CrossRef] [PubMed]

Z. Chen, T.E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M.J.C. van Gemert, J.S. Nelson, �??Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,�?? Opt. Lett. 22, 1119-21 (1997).
[CrossRef] [PubMed]

J.A. Izatt, M.D. Kulkarni, S. Yazdanfar, J.K. Barton, A.J. Welch, �??In vivo bi-directional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,�?? Opt. Lett. 22, 1439-41 (1997).
[CrossRef]

G.J. Tearney, B.E. Bouma, J.G. Fujimoto, �??High-speed phase- and group-delay scanning with a grating based phase control delay line,�?? Opt. Lett. 22, 1811-3 (1997).
[CrossRef]

M.J. Everett, K. Schoenenberger, B.W. Colston, L.B. Da Silva, �??Birefringence characterization of biological tissue by use of optical coherence tomography,�?? Opt. Lett. 23, 228-30 (1998).
[CrossRef]

J.M. Schmitt, S.H. Xiang, �??Cross-polarized backscatter in optical coherence tomography of biological tissue,�?? Opt. Lett. 23, 1060-2 (1998).
[CrossRef]

J.F. de Boer, T.E. Milner, J.S. Nelson, �??Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,�?? Opt. Lett. 24, 300-2 (1999).
[CrossRef]

G. Yao, L.V. Wang, �??Two dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,�?? Opt. Lett. 24, 537-9 (1999).
[CrossRef]

W. Drexler, U. Morgner, F.X. Kärtner, C. Pitris, S.A. Boppart, X.D. Li, E.P. Ippen, J.G. Fujimoto, �??In vivo ultrahigh-resolution optical coherence tomography,�?? Opt. Lett. 24, 1221-3 (1999).
[CrossRef]

C.E. Saxer, J.F. de Boer, B.H. Park, Y. Zhao, Z. Chen, J.S. Nelson, �??High-speed fiber-based polarizationsensitive optical coherence tomography of in vivo human skin,�?? Opt. Lett. 25, 1355-7 (2000).
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J.F. de Boer, J.S. Nelson, �??Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,�?? Opt. Lett. 25, 1358 (2000).
[CrossRef]

Phys. Med. Biol. (1)

T. Lindmo, D.J. Smithies, Z. Chen, J.S. Nelson, T.E. Milner, �??Accuracy and noise in optical Doppler tomography studied by Monte Carlo simulation,�?? Phys. Med. Biol. 43, 3045-64 (1998).
[CrossRef] [PubMed]

Science (1)

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178-81 (1991).
[CrossRef] [PubMed]

Supplementary Material (2)

» Media 1: MOV (2471 KB)     
» Media 2: MOV (7718 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Diagram of the OCT system and driving waveforms. The RSOD and polarization modulator are driven by a rounded triangle and a step function, respectively, both at approximately 1 kHz. A phase delay is introduced such that the RSOD galvo response is in phase with the polarization modulator. The system processes the central 80% of the positive and negative sloping regions of the RSOD response, yielding even and odd A-lines. (pol: polarizer, pc: passive polarization controller, pm: electro-optic polarization modulator, oc:optical circulator, RSOD: rapid scanning optical delay line, fpb: fiber polarizing beam splitter, pd: fiber-pigtailed photodiodes, ccd: charge coupled device camera).

Fig. 2.
Fig. 2.

Flow diagram of data processing. The main thread begins processing a data chunk as soon as it has been acquired. This entails activating even and odd A-line processing threads to convert the detected interference patterns into Stokes parameters and phase information, as well as updating the intensity image. Once initial processing of the data chunk has been completed, the birefringence and flow threads perform their respective analysis and image updates. The save thread writes raw data to disk once an image is completely acquired.

Fig. 3.
Fig. 3.

Line graph demonstrating the relationship between the time scales tj and Tk for parameters of 2048 points sampled at 5 MS/s at a carrier frequency of 625 kHz and q=8.

Fig. 4.
Fig. 4.

Birefringence calculation illustrating (a): the surface states, I⃗ 1 and I⃗ 2, in blue and the reflected states, I⃗1 and I⃗2, in green, (b, c) the planes P 1 and P 2 that span all possible rotation axes, and (d): the intersection of the planes resulting in determination of the optic axis A⃗.

Fig 5.
Fig 5.

Effect of noise on the calculated rotation angle. For a given axis optic axis A⃗, two pairs of I⃗ 1 and I⃗1 are shown, one with large θ A , I j and the other with small θ A , I j . The cones represent the uncertainty in orientation of the polarization states due to noise. The red areas show the variation in rotation angle θ j due to the uncertainty introduced by noise, demonstrating the increased uncertainty involved in determining θ j when the polarization state of incident light is closely aligned with the optic axis.

Fig. 6.
Fig. 6.

Intensity, birefringence, and flow (phase variance) images of the proximal nail fold of a human volunteer (upper, middle, and lower images respectively). The epidermal (a) and dermal (b) areas of the nail fold, cuticle (c), nail plate (d), nail bed (e), and nail matrix (f) are all identifiable in the intensity image. The birefringence image shows the phase retardation of the epidermal-dermal boundary (g) as well as the lower half of the nail plate (h). Small transverse blood vessels in the nail fold are distinguishable in the flow image by their lighter color. Each image is 5 mm×1.2 mm, with all data acquired in 1 s.

Fig. 7.
Fig. 7.

(2.5 MB) Video recording of 4 seconds of real-time MF-OCT imaging of the same proximal nail fold. Moving clockwise from the top left corner are the simple user interface, intensity, birefringence, flow images, view of the scanning area, and spectrum. (7.5 MB version).

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

f ( t ) = Re { f e n v ( t ) e i ( s 0 t + ϕ ( t ) ) } = f cos ( t ) cos ( s 0 t ) f sin ( t ) sin ( s 0 t )
0 Δ t f ( t ) e i s 0 t d t = 0 Δ t ( f cos ( t ) cos ( s 0 t ) f sin ( t ) sin ( s 0 t ) ) ( cos ( s 0 t ) i sin ( s 0 t ) ) dt
= 0 Δ t ( f cos ( t ) cos 2 ( s 0 t ) + i f sin ( t ) sin 2 ( s 0 t ) ) d t
f cos ( t ) + i f sin ( t )
cos H n , V n [ T k ] = l = 1 q H n , V n [ T k + l δ t ] cos ( s 0 l δ t )
sin H n , V n [ T k ] = l = 1 q H n , V n [ T k + l δ t ] sin ( s 0 l δ t )
I n [ T k ] = ( cos H n 2 [ T k ] + sin H n 2 [ T k ] + cos V n 2 [ T k ] + sin V n 2 [ T k ] )
Q n [ T k ] = ( cos H n 2 [ T k ] + sin H n 2 [ T k ] cos V n 2 [ T k ] sin V n 2 [ T k ] )
U n [ T k ] = 2 ( cos H n [ T k ] cos V n [ T k ] + sin H n [ T k ] sin V n [ T k ] )
V n [ T k ] = 2 ( cos H n [ T k ] sin V n [ T k ] sin H n [ T k ] cos V n [ T k ] )
ϕ H n , V n [ T k ] = tan 1 ( sin H n , V n [ T k ] cos H n , V n [ T k ] ) .
cos θ j = ( A × I j ) · ( A × I j ) A × I j A × I j .
θ = ( I 1 sin ( θ A , I 1 ) I 1 sin ( θ A , I 1 ) ) θ 1 + ( I 2 sin ( θ A , I 2 ) I 2 sin ( θ A , I 2 ) ) θ 2 ( I 1 sin ( θ A , I 1 ) I 1 sin ( θ A , I 1 ) ) + ( I 2 sin ( θ A , I 2 ) I 2 sin ( θ A , I 2 ) ) .
ω n [ z ] = ( I n [ z ] + Q n [ z ] ) Δ ϕ H n [ z ] + ( I n [ z ] Q n [ z ] ) Δ ϕ V n [ z ] ( I n [ z ] + Q n [ z ] ) + ( I n [ z ] Q n [ z ] ) · 1 2 T .
Var n [ z ] = ( I n [ z ] + Q n [ z ] ) Δ ϕ H n 2 [ z ] + ( I n [ z ] Q n [ z ] ) Δ ϕ V n 2 [ z ] ( I n [ z ] + Q n [ z ] ) + ( I n [ z ] Q n [ z ] ) .

Metrics